17.若角α的終邊過(guò)點(diǎn)(1,-2),則sin2α=-$\frac{4}{5}$.

分析 利用三角函數(shù)的定義,計(jì)算α的正弦與余弦值,再利用二倍角公式,即可求得結(jié)論.

解答 解:∵由題意可得:$x=1,y=-2,r=\sqrt{{x^2}+{y^2}}=\sqrt{5}$,
∴$sinα=-\frac{2}{{\sqrt{5}}},cosα=\frac{1}{{\sqrt{5}}}$,
∴$sin2α=2sinαcosα=2×(-\frac{2}{{\sqrt{5}}})×\frac{1}{{\sqrt{5}}}=-\frac{4}{5}$.
故答案為:-$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的定義,考查二倍角公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若曲線f(x)=ex+$\frac{m}{x}$在(-∞,0)上存在垂直y軸的切線,則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,$\frac{4}{{e}^{2}}$]B.(0,$\frac{4}{{e}^{2}}$]C.(-∞,4]D.(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y≤2\\ y≥0\end{array}\right.$,則點(diǎn)P(x,y)所在區(qū)域的面積是1;若z=ax+y的最大值為4,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為4的菱形,AA1=2$\sqrt{6}$,BD⊥BB1,∠BAD=60°,∠A1AC=45°,點(diǎn)E、F分別是線段AA1,BB1的中點(diǎn).
(I)求證:平面BDE∥平面A1CF;
(Ⅱ)求三棱錐B-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線y2=4x的焦點(diǎn),A是拋物線上一點(diǎn),若$\overrightarrow{OA}$•$\overrightarrow{AF}$=-4,則點(diǎn)A的坐標(biāo)是( 。
A.(1,±2)B.(1,2)C.(1,-2 )D.(1,±1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(  )
A.y=exB.y=sin2xC.y=-x3D.y=log${\;}_{\frac{1}{2}}}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知長(zhǎng)方形ABCD中,AB=2AD,M為DC的中點(diǎn).將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(Ⅰ)求證:AD⊥BM;
(Ⅱ)若E是線段DB上的一動(dòng)點(diǎn),問(wèn)點(diǎn)E在何位置時(shí),三棱錐E-ADM的體積與四棱錐D-ABCM的體積之
比為1:3?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.A={(x,y)|y=2x+5},B={(x,y)|y=1-2x},則A∩B=( 。
A.(-1,3)B.{(-1,3)}C.{-1,3}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過(guò)點(diǎn)(0,1),且長(zhǎng)軸長(zhǎng)是焦距的$\sqrt{2}$倍.過(guò)橢圓左焦點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線AB垂直于x軸,判斷點(diǎn)O與以線段AB為直徑的圓的位置關(guān)系,并說(shuō)明理由;
(Ⅲ)若點(diǎn)O在以線段AB為直徑的圓內(nèi),求直線AB的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案