15.當(dāng)x>1時.求y=2+3x+$\frac{4}{x-1}$的取值范圍.

分析 由y=2+3x+$\frac{4}{x-1}$=5+3(x-1)+$\frac{4}{x-1}$,根據(jù)基本不等式即可求出函數(shù)的值域.

解答 解:∵x>1,
∴y=2+3x+$\frac{4}{x-1}$=5+3(x-1)+$\frac{4}{x-1}$≥5+2$\sqrt{3(x-1)•\frac{4}{x-1}}$=5+4$\sqrt{3}$,
當(dāng)且僅當(dāng)x=1+$\frac{2\sqrt{3}}{3}$時取等號,
故y=2+3x+$\frac{4}{x-1}$的取值范圍為[5+4$\sqrt{3}$,+∞).

點評 本題考查了基本不等式求函數(shù)的值域的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y-2≤0\\ x-3y≥0\\ y≥0\end{array}\right.$,則z=x-2y的最大值為( 。
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,Sn為其前n項的和,滿足:a22+a32=a42+a52,S7=7.
(1)求數(shù)列{an}的通項公式及前n項的和Sn;
(2)設(shè)數(shù)列{bn}滿足bn=2${\;}^{{a}_{n}}$,其前n項的和為Tn,當(dāng)n為何值時,有Tn>512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A={x|x∈R|ax2-2x-1=0},B={x|y=$\sqrt{x}$},A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.極坐標(biāo)系中,已知曲線C1:ρ=2cosθ,曲線C2:ρ=2cos($θ-\frac{π}{3}$).
(1)求C1與C2交點的直角坐標(biāo).
(2)若曲線C3:θ=$\frac{2π}{3}$(ρ∈R,ρ≠0)分別與C1,C2相交于A,B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.三棱錐S-ABC中所有棱長都相等且為a,求SA與底面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項和為Sn,a3=6,S3=12.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求證:S1,S3,S8成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在數(shù)列{an}中,a1=1,an=n•an-1,n=2,3,4,….
(Ⅰ)計算a2,a3,a4,a5的值;
(Ⅱ)根據(jù)計算結(jié)果,猜想{an}的通項公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對于分類變量X與Y的隨機(jī)變量K2的觀測值k,下列說法正確的是( 。
A.k越大,“X與Y有關(guān)系”的可信程度越小
B.k越小,“X與Y有關(guān)系”的可信程度越小
C.k越接近于0,“X與Y沒有關(guān)系”的可信程度越小
D.k越大,“X與Y沒有關(guān)系”的可信程度越大

查看答案和解析>>

同步練習(xí)冊答案