5.如圖,在圓C中,弦AB的長為4,則$\overrightarrow{AB}•\overrightarrow{AC}$=( 。
A.8B.-8C.4D.-4

分析 根據(jù)平面向量數(shù)量積的定義,利用圓的垂徑定理,即可求出答案.

解答 解:如圖所示,
在圓C中,過點C作CD⊥AB于D,則D為AB的中點;
在Rt△ACD中,AD=$\frac{1}{2}$AB=2,
可得cosA=$\frac{AD}{AC}$=$\frac{2}{|\overrightarrow{AC}|}$,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|×|$\overrightarrow{AC}$|×cosA=4×|$\overrightarrow{AC}$|×$\frac{2}{|\overrightarrow{AC}|}$=8.
故選:A.

點評 本題考查了圓的性質(zhì)、直角三角形中三角函數(shù)的定義與向量的數(shù)量積公式等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,\overrightarrow a•({\overrightarrow b-\overrightarrow a})=1$,則$|{\overrightarrow a-\overrightarrow b}|$=( 。
A.$\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{7}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知向量$\overrightarrow{a}$=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t),θ∈R.
(1)若$\overrightarrow{AB}$⊥$\overrightarrow{a}$,且$|\overrightarrow{AB}|=\sqrt{5}|\overrightarrow{OA}|$,求向量$\overrightarrow{OB}$;
(2)若向量$\overrightarrow{AC}$與向量$\overrightarrow{a}$共線,常數(shù)k>0,求f(θ)=tsinθ的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在區(qū)間[0,2]上隨機地取一個數(shù)x,則事件“-1≤log ${\;}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1”發(fā)生的概率(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+x+1,x≥0}\\{2x+1,x<0}\end{array}}\right.$,若f(sinα+sinβ+sinr-1)=-1,f(cosα+cosβ+cosr+1)=3,則cos(α-β)+cos(β-r)的值為( 。
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|AB|=3,A、B分別在x軸和y軸上滑動,O為坐標(biāo)原點,$\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}$,則動點P的軌跡方程是$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖是導(dǎo)函數(shù)y=f′(x)的圖象,對于函數(shù)y=f(x)的極值點的說法:?
①x1和x5是函數(shù)y=f(x)的極大值點;
②?x3和x6是函數(shù)y=f(x)的極小值點;
③x2是函數(shù)y=f(x)的極大值點;
④x4是函數(shù)y=f(x)的極小值點;
⑤x6不是函數(shù)y=f(x)的一個極值點.
其中正確的序號有③④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線3x+4y+2=0與圓x2+y2-2tx=0相切,則t=1或$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=Asin(ωx+ϕ)$(ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,則函數(shù)表達式為(  )
A.$y=-4sin(\frac{π}{8}x-\frac{π}{4})$B.$y=4sin(\frac{π}{8}x-\frac{π}{4})$C.$y=-4sin(\frac{π}{8}x+\frac{π}{4})$D.$y=4sin(\frac{π}{8}x+\frac{π}{4})$

查看答案和解析>>

同步練習(xí)冊答案