9.設(shè)函數(shù)fn′(x)是fn(x)的導(dǎo)函數(shù),f0(x)=ex(cosx+sinx),f1(x)=$\frac{f_0^'(x)}{{\sqrt{2}}}$,f2(x)=$\frac{f_1^'(x)}{{\sqrt{2}}}$,…,${f_{n+1}}(x)=\frac{f_n^'(x)}{{\sqrt{2}}}$(n∈N),則f2016(x)=(  )
A.ex(cosx+sinx)B.ex(cosx-sinx)C.-ex(cosx+sinx)D.ex(sinx-cosx)

分析 我們易得到fn(x)表達(dá)式以8為周期,呈周期性變化,由于2016÷8余0,故f2008(x)=f0(x),進(jìn)而得到答案

解答 解:∵f0(x)=ex(cosx+sinx),
∴f0′(x)=ex(cosx+sinx)+ex(-sinx+cosx)=2excosx,
∴f1(x)=$\frac{f_0^'(x)}{{\sqrt{2}}}$=$\sqrt{2}$excosx,
∴f1′(x)=$\sqrt{2}$ex(cosx-sinx),
∴f2(x)=$\frac{f_1^'(x)}{{\sqrt{2}}}$=ex(cosx-sinx),
∴f2′(x)=ex(cosx-sinx)+ex(-sinx-cosx)=-2exsinx,
∴f3(x)=-$\sqrt{2}$exsinx,
∴f3′(x)=-$\sqrt{2}$ex(sinx+cosx),
∴f4(x)=-ex(cosx+sinx),
∴f4′(x)=-2excosx,
∴f5(x)=-$\sqrt{2}$excosx,
∴f6(x)=-ex(cosx-sinx),
∴f7(x)=$\sqrt{2}$exsinx,
∴f8(x)=ex(cosx+sinx),
…,
∴f2016(x)=f(0)=ex(cosx+sinx),
故選:A.

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的周期性,函數(shù)的值,其中根據(jù)已知中的遞推式得到fn(x)表達(dá)式以8為周期,呈周期性變化,是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|y=$\sqrt{x-{x}^{2}}$},B={y|y-1<0},則A∩B=( 。
A.(-∞,1)B.(-∞,1]C.[0,1)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|x2-2x-3>0},B={x|2<x<4},則集合A∩B=( 。
A.(1,4)B.(2,4)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線y=x+b,b∈[-2,3],則直線在y軸上的截距大于1的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋物線y2=-4x的焦點(diǎn)坐標(biāo)是( 。
A.(-2,0)B.(-1,0)C.(0,-1)D.(0,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,是一個獎杯的三視圖(單位:cm),底座是正四棱臺.
(Ⅰ)求這個醬的體積(π取3.14);
(Ⅱ)求這個獎杯底座的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.完成一件事有幾類辦法,各類辦法相互獨(dú)立,每類辦法中又有多種不同的辦法,則完成這件事的不同辦法數(shù)是各類不同方法種數(shù)的和,這就是分類計數(shù)原理,也叫做加法原理.完成一件事,需要分成幾個步驟,每一步的完成有多種不同的方法,則完成這件事的不同方法種數(shù)是各種不同的方法數(shù)的乘積,這就是分步計數(shù)原理,也叫做乘法原理.
(Ⅰ)300人參加校內(nèi)競賽,每個人都可以享受加分政策,且有10,20,30,60四個檔次.
加分人數(shù)
1030
2090
30150
6030
小王想獲得至少30分的加分,那么概率為多少?
(Ⅱ)某大學(xué)的錄取分?jǐn)?shù)線為660分,小王估得高考分?jǐn)?shù)可能在630~639,640~649,650~659三個分段.
(1)若小王的高考分?jǐn)?shù)在630~639分段,則小王被該大學(xué)錄取的概率為多少?
(2)若小王的高考分?jǐn)?shù)在三個分段的概率都是$\frac{1}{3}$,則小王被該大學(xué)錄取的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將除顏色完全相同的一個白球、一個黃球、兩個紅球紅球分給三個小朋友,且每個小朋友至少分得一個球的分法有 ( 。┓N.
A.15B.21C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若復(fù)數(shù)z滿足z=cosα+isinα,復(fù)數(shù)ω=$\frac{z+\overline{z}}{1+z^2}$,則|ω|=1.

查看答案和解析>>

同步練習(xí)冊答案