16.已知直線l的傾斜角為75°,則直線l的斜率是2+$\sqrt{3}$.

分析 根據(jù)直線的傾斜角結(jié)合三角函數(shù)公式求出斜率k的值即可.

解答 解:∵直線l的傾斜角為75°,
∴直線l的斜率k=tan75°=tan(30°+45°)=$\frac{tan30°+tan45°}{1-tan30°tan45°}$=$\frac{3+\sqrt{3}}{3-\sqrt{3}}$=2+$\sqrt{3}$,
故答案為:2+$\sqrt{3}$.

點(diǎn)評 本題考查了直線的傾斜角問題,考查三角函數(shù)的公式,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD,BC=4,點(diǎn)M為PC中點(diǎn),點(diǎn)E為BC邊上的動點(diǎn),且$\frac{BE}{EC}=λ$.
(Ⅰ)求證:DM∥平面PAB;  
(Ⅱ)求證:平面ADM⊥平面PBC;
(Ⅲ)是否存在實(shí)數(shù)λ,使得二面角P-DE-B的余弦值為$\frac{2}{3}$?若存在,試求出實(shí)數(shù)λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=a(lnx-x)-3(a∈R,a≠0)的圖象在點(diǎn)(2,f(2))處的切線斜率為1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對任意t∈[0,1],函數(shù)g(x)=x3+x2($\frac{m}{2}$+f′(x))在區(qū)間(t,2)上總存在極值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若f(x)=$\left\{\begin{array}{l}{\frac{sin6x+{e}^{-3ax}-1}{3x},x≠0}\\{a,x=0}\end{array}\right.$在點(diǎn)x=0連續(xù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,DC∥AB,PA=1,AB=2,PD=BC=$\sqrt{2}$.
(1)求證:平面PAD⊥平面PCD;
(2)試在棱PB上確定一點(diǎn)E,使截面AEC把該幾何體分成的兩部分PDCEA與EACB的體積比為2:1;
(3)在(2)的條件下,求二面角E-AC-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)的定義域?yàn)椋簕x|x≠0},且2f(x)+f($\frac{1}{x}$)=x,試判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.AB是⊙O的直徑,點(diǎn)C是⊙O上的動點(diǎn),過動點(diǎn)C的直線VC垂直于⊙O所在的平面,D,E分別是VA,VC的中點(diǎn).
(1)試判斷直線DE與平面VBC的位置關(guān)系,并說明理由;
(2)若已知AB=VC=2,0<BC<1,求二面角C-VB-A的余弦值的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一條光線從點(diǎn)P(5,3)射出,與x軸相交于點(diǎn)Q(2,0),經(jīng)x軸反射,則反射光線所在直線的方程為(  )
A.x+y-2=0B.x-y-2=0C.x-y+2=0D.x+y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一個(gè)周期內(nèi)的圖象如圖所示,M,N分別是最大、最小值點(diǎn),且$\overrightarrow{OM}•\overrightarrow{ON}$=0,則A=$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案