5.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一個(gè)周期內(nèi)的圖象如圖所示,M,N分別是最大、最小值點(diǎn),且$\overrightarrow{OM}•\overrightarrow{ON}$=0,則A=$\frac{π}{6}$.

分析 由題意寫出點(diǎn)M、N的坐標(biāo),利用$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,即可求出A的值.

解答 解:由題意,M,N分別是這段圖象的最高點(diǎn)和最低點(diǎn),O為坐標(biāo)原點(diǎn),
∴$\overrightarrow{OM}$=($\frac{π}{12}$,A),$\overrightarrow{ON}$=($\frac{π}{3}$,-A),
則$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{π}{12}$×$\frac{π}{3}$-A2=0,
解得A=$\frac{π}{6}$.
故答案為:$\frac{π}{6}$.

點(diǎn)評 本題考查三角函數(shù)的圖象與應(yīng)用問題,也考查了平面向量數(shù)量積的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線l的傾斜角為75°,則直線l的斜率是2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)是R上的偶函數(shù),且在區(qū)間(-∞,0]上是減函數(shù),令a=f(sin$\frac{2}{7}$π),b=f(cos$\frac{5}{7}$π),c=f(tan$\frac{5}{7}$π),則( 。
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知:數(shù)列{an}的前n項(xiàng)和為Sn,且2an-2n=Sn,
(1)求證:數(shù)列{an-n•2n-1}是等比數(shù)列;
(2)求:數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}中bn=$\frac{{({n^2}+19)•{2^n}}}{a_n}$,求:bn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量$\overrightarrow{m}$=(a+c,b)與向量$\overrightarrow{n}$=(a-c,b-a)互相垂直.
(1)求角C;
(2)求sinA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=-40,a6+a10=-10,則S8=-180.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N*,等比數(shù)列{bn}滿足b1=1,b4=8,n∈N*
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖是根據(jù)某校10位高一同學(xué)的身高(單位:cm)畫出的莖葉圖,其中左邊的數(shù)字從左到右分別表示學(xué)生身高的百位數(shù)字和十位數(shù)字,右邊的數(shù)字表示學(xué)生身高的個(gè)位數(shù)字,從圖中可以得到這10位同學(xué)身高的中位數(shù)是( 。
A.161 cmB.162 cmC.163 cmD.164 cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AC=2,BD=$\sqrt{2}$,AE、CF都與平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大;
(2)在答題卡的圖中畫出四棱錐F-ABCD與四棱錐E-ABCD的公共部分,并計(jì)算此公共部分的體積.

查看答案和解析>>

同步練習(xí)冊答案