A. | (-∞,$\frac{2}{3}$)∪($\frac{4}{3}$,+∞) | B. | ($\frac{2}{3}$,$\frac{4}{3}$) | C. | (-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞) | D. | ($\frac{1}{3}$,$\frac{2}{3}$) |
分析 根據(jù)函數(shù)f(x+1)是偶函數(shù),可得函數(shù)f(x)關于x=1對稱,利用f(2x-1)<f($\frac{1}{3}$),f($\frac{5}{3}$)=f($\frac{1}{3}$),轉(zhuǎn)化為$\frac{1}{3}$<2x-1<$\frac{5}{3}$,即可求出x的取值范圍.
解答 解:∵函數(shù)f(x+1)是偶函數(shù),
∴函數(shù)f(x)關于x=1對稱,
∵f(2x-1)<f($\frac{1}{3}$),f($\frac{5}{3}$)=f($\frac{1}{3}$),
∴$\frac{1}{3}$<2x-1<$\frac{5}{3}$,
∴$\frac{2}{3}$<x<$\frac{4}{3}$,
故選:B.
點評 本題考查解不等式,考查函數(shù)的奇偶性、單調(diào)性,考查學生的計算能力,正確轉(zhuǎn)化是關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 存在k∈N,使a4k+1>0 | B. | 任給k∈N,使a${\;}_{{2}^{k}}$+1>0 | ||
C. | 不存在k∈N,使a3k+2<0 | D. | $\sqrt{{a}_{4n+1}{a}_{4n+9}}$=-a4n+5(n∈N) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
喜愛程度 | 非常喜歡 | 一般 | 不喜歡 |
人數(shù) | 500 | 200 | 100 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com