【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)抽取100名學(xué)生調(diào)查寒假期間學(xué)生平均每天的學(xué)習(xí)時間,被調(diào)查的學(xué)生每天用于學(xué)習(xí)的時間介于1小時和11小時之間,按學(xué)生的學(xué)習(xí)時間分成5組:第一組[1,3),第二組[3,5),第三組[5,7),第四組[7,9),第五組[9,11],繪制成如圖所示的頻率分布直方圖.
(Ⅰ)求學(xué)習(xí)時間在[7,9)的學(xué)生人數(shù);
(Ⅱ)現(xiàn)要從第三組、第四組中用分層抽樣的方法抽取6人,從這6人中隨機(jī)抽取2人交流學(xué)習(xí)心得,求這2人中至少有1人的學(xué)習(xí)時間在第四組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為(為參數(shù), ),直線,若直線與曲線C相交于A,B兩點,且.
(Ⅰ)求;
(Ⅱ)若M,N為曲線C上的兩點,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 曲線的參數(shù)方程為為參數(shù)) ;在以原點為極點, 軸的正半軸為極軸的極坐標(biāo)系中, 曲線的極坐標(biāo)參數(shù)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線與曲線,的交點分別為 (異于原點). 當(dāng)斜率時, 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和為Sn , 若對于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式;
(2)求數(shù)列{nan}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+)(A,ω,是常數(shù),A>0,ω>0)的部分圖象如圖所示,下列結(jié)論: ①最小正周期為π;
②將f(x)的圖象向左平移 個單位,所得到的函數(shù)是偶函數(shù);
③f(0)=1;
④ ;
⑤ .
其中正確的是( )
A.①②③
B.②③④
C.①④⑤
D.②③⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C方程為 (a>b>0),左、右焦點分別是F1 , F2 , 若橢圓C上的點P(1, )到F1 , F2的距離和等于4. (Ⅰ)寫出橢圓C的方程和焦點坐標(biāo);
(Ⅱ)設(shè)點Q是橢圓C的動點,求線段F1Q中點T的軌跡方程;
(Ⅲ)直線l過定點M(0,2),且與橢圓C交于不同的兩點A,B,若∠AOB為銳角(O為坐標(biāo)原點),求直線l的斜率k0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,半徑為的圓與相切,圓心在軸上且在直線的上方.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點的直線與圓交于兩點(在軸上方),問在軸正半軸上是否存在點,使得軸平分?若存在,請求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com