3.已知tan(α-π)=$\frac{3}{4}$,化簡計算:sin2α+2cos2α=$\frac{56}{25}$(填數(shù)值).

分析 由條件求得tanα的值,再利用同角三角函數(shù)的基本關(guān)系求得要求式子的值.

解答 解:∵tan(α-π)=tanα=$\frac{3}{4}$,∴sin2α+2cos2α=$\frac{2sinαcosα+{2cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{2tanα+2}{{tan}^{2}α+1}$=$\frac{56}{25}$,
故答案為:$\frac{56}{25}$.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$是兩個不共線向量,若(2$\overrightarrow{a}$-$\overrightarrow$)∥($\overrightarrow{a}$+k$\overrightarrow$),則實(shí)數(shù)k的值為(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.[普通高中]設(shè)不等式x2-2ax+a+2≤0的解集為非空數(shù)集M,且M⊆[1,4],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直角坐標(biāo)平面xOy內(nèi)已知定點(diǎn)F(1,0),動點(diǎn)P在y軸上運(yùn)動,過點(diǎn)P作PM交x軸于點(diǎn)M,使得$\overrightarrow{PM}$•$\overrightarrow{PF}$=0,延長MP到點(diǎn)N,使得|$\overrightarrow{PM}$|=|$\overrightarrow{PN}$|
(1)當(dāng)|$\overrightarrow{OP}$|=1時,求$\overrightarrow{FM}$•$\overrightarrow{FN}$;
(2)求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.命題“?x0∈(0,+∞),ln x0=x0-1”的否定是?x∈(0,+∞),ln x≠x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)正方體的所有棱長都為a,頂點(diǎn)都在一個球面上,則該球的表面積為( 。
A.πa2B.2πa2C.3πa2D.12πa2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式-x2-x+2<0的解集為( 。
A.{x|x<-2或 x>1 }B.{x|-2<x<1 }C.{x|x<-1 或x>2 }D.{x|-1<x<2 }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求證:AB1⊥CC1;
(2)若$A{B_1}=\sqrt{6}$,求二面角C-AB1-A1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,AB切⊙O于點(diǎn)B,點(diǎn)G為AB的中點(diǎn),過G作⊙O的割線交⊙O于點(diǎn)C、D,連接AC并延長交⊙O于點(diǎn)E,連接AD并交⊙O于點(diǎn)F,求證:EF∥AB.

查看答案和解析>>

同步練習(xí)冊答案