求x+
1
x
 (x<0)的最大值.
考點(diǎn):基本不等式
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:當(dāng)x<0時(shí),-x>0,則x+
1
x
=-[(-x)+
1
-x
],運(yùn)用基本不等式即可得到最大值.
解答: 解:當(dāng)x<0時(shí),-x>0,
則x+
1
x
=-[(-x)+
1
-x
]
≤-2
(-x)•
1
-x
=-2,
當(dāng)且僅當(dāng)x=-1時(shí),取最大值-2.
則x+
1
x
(x<0)的最大值為-2.
點(diǎn)評(píng):本題考查基本不等式的運(yùn)用:求最值,注意:一正二定三等,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0(a<0),q:實(shí)數(shù)x滿足x2-x-5<0或x2+2x-8>0,若q是p的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(2,1)的直線l與橢圓
x2
2
+y2=1相交,求橢圓截得的弦的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)M到點(diǎn)F(4,0)的距離比它到直線l:x+6=0的距離小2.
(1)求點(diǎn)M的軌跡方程;
(2)若直線y=x-5與(1)中的軌跡交于A、B兩點(diǎn),求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=180,則a3+a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為C:
x2
25
+
y2
9
=1.
(1)求以中點(diǎn)為(4,1)的弦所在直線方程;
(2)求斜率為3的直線與橢圓相交所得的弦的中點(diǎn)的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|cosx|
x
-k在(0,+∞)上恰有四個(gè)零點(diǎn)x1、x2、x3、x4,且0<x1<x2<x3<x4,則( 。
A、tan(x1+
π
4
)=
x1-1
1+x1
B、tan(x2+
π
4
)=
x2-1
1+x2
C、tan(x3+
π
4
)=
x3-1
1+x3
D、tan(x4+
π
4
)=
x4-1
1+x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD中,AD與BC不平行,
AD
=
a
BC
=
b
,
BP
=
1
3
BD
,
CQ
=
1
3
CA
,試以
a
,
b
為基底表示
PQ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法錯(cuò)誤的是( 。
A、命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
B、命題“在△ABC中,若sinA>sinB,則A>B”的逆否命題為真命題
C、命題“在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若a2+b2>c2,則C為銳角”為真命題
D、若p∧q為假命題,則p、q均為假命題

查看答案和解析>>

同步練習(xí)冊(cè)答案