精英家教網 > 高中數學 > 題目詳情
4.拋物線y2=2x與直線y=x-4圍成的平面圖形面積( 。
A.18B.16C.20D.14

分析 方法一:根據題目信息,作出圖形,如圖所示:聯(lián)立$\left\{\begin{array}{l}{y=2x}\\{y=x-4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$,或$\left\{\begin{array}{l}{x=8}\\{y=4}\end{array}\right.$,則所求的面積為S=${∫}_{0}^{2}$$\sqrt{2x}$dx+${∫}_{2}^{8}$($\sqrt{2x}$-x+4)dx,求出原函數,即可求得平面區(qū)域的面積,方法二:對y進行積分,所求的面積為S=${∫}_{-2}^{4}$(y+4-$\frac{{y}^{2}}{2}$)dy,即可求得平面區(qū)域的面積.

解答 解:方法一:根據題目信息,作出圖形,如圖所示:

聯(lián)立$\left\{\begin{array}{l}{y=2x}\\{y=x-4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$,或$\left\{\begin{array}{l}{x=8}\\{y=4}\end{array}\right.$,則所求的面積為S=${∫}_{0}^{2}$$\sqrt{2x}$dx+${∫}_{2}^{8}$($\sqrt{2x}$-x+4)dx.
∵[$\frac{1}{3}$•$(2x)^{\frac{3}{2}}$]′=$\sqrt{2x}$,
∴S=[$\frac{1}{3}$•$(2x)^{\frac{3}{2}}$]${丨}_{0}^{2}$+[$\frac{1}{3}$•$(2x)^{\frac{3}{2}}$-$\frac{{x}^{2}}{2}$+4x]${丨}_{2}^{8}$=18
故拋物線y2=2x與直線y=x-4所圍成的圖形的面積是18,
故選A.
方法二:根據題目信息,作出圖形,如圖所示:
聯(lián)立$\left\{\begin{array}{l}{y=2x}\\{y=x-4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$,或$\left\{\begin{array}{l}{x=8}\\{y=4}\end{array}\right.$,
則所求的面積為S=${∫}_{-2}^{4}$(y+4-$\frac{{y}^{2}}{2}$)dy=($\frac{1}{2}$y2+4y-$\frac{{y}^{3}}{6}$)${丨}_{-2}^{4}$=(8+16-$\frac{32}{3}$-2+8-$\frac{4}{3}$)=18,
故選A.

點評 本題考查定積分的簡單應用,考查拋物線的與直線的位置關系,考查計算能力,選擇合適的積分函數能夠減少計算量,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

5.下列四個命題:
(1)函數f(x)在x>0時是增函數,x<0也是增函數,所以f(x)是增函數;
(2)若函數f(x)=ax2+bx+2與x軸沒有交點,則b2-8a<0且a>0;
(3)y=x2-2|x|-3的遞增區(qū)間為[1,+∞);
(4)y=1+x和y=$\sqrt{(1+x)^{2}}$表示相等函數.
(5)若函數f(x-1)的定義域為[1,2],則函數f(2x)的定義域為$[0,\frac{1}{2}]$.
其中正確的命題是(5)(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.函數f(x)=cos2x+6sin($\frac{π}{2}$+x)的最大值是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知命題p:函數y=log2($\sqrt{{x}^{2}+1}$-x)是奇函數;命題q:?x0∈(0,+∞),2${\;}^{{x}_{0}}$=$\frac{1}{2}$,則下列判斷正確的是( 。
A.p是假命題B.q是真命題C.p∧(¬q)是真命題D.(¬p)∧q是真命題

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.若向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1,|{\overrightarrow a-4\overrightarrow b}|=2\sqrt{7}$,則向量$\overrightarrow a,\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.P是雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的右支上一點,M,N分別是圓x2+y2+10x+21=0和x2+y2-10x+24=0上的點,則|PM|-|PN|的最大值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.書架上有4本不同的語文書,2本不同的數學書,從中任意取出2本,能取出數學書的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知集合A={-1,1,2},集合B={x|x-1>0},集合A∩B為( 。
A.ϕB.{1,2}C.{-1,1,2}D.{2}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.若a>b,則下列不等式中正確的是( 。
A.$\frac{1}{a}<\frac{1}$B.a2>b2C.a+b≥2$\sqrt{ab}$D.a2+b2>2ab

查看答案和解析>>

同步練習冊答案