【題目】某校從參加高一年級期末考試的學(xué)生中抽出40名學(xué)生,將其成績(均為整數(shù))分成六段,…后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補(bǔ)全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計(jì)這次考試的及格率(60分及以上為及格)和平均分.
【答案】(1),直方圖見解析;(2)及格率為,平均分為
【解析】
(1)根據(jù)頻率分布直方圖可得除第四小組外各小組頻率,再根據(jù)所有頻率和為1求第4小組的頻率,計(jì)算第4小組的對應(yīng)的矩形的高,補(bǔ)全頻率分布直方圖;
(2)計(jì)算60分及以上各小組對應(yīng)頻率和即得及格率,利用組中值計(jì)算平均分.
解(1)由頻率分布直方圖可知第1、2、3、5、6小組的頻率分別為:0.1、0.15、0.15、0.25、0.05,所以第4小組的頻率為:.
∴在頻率分布直方圖中第4小組的對應(yīng)的矩形的高為,對應(yīng)圖形如圖所示:
(2)考試的及格率即60分及以上的頻率
∴及格率為
又由頻率分布直方圖有平均分為:
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年月日,某地援鄂醫(yī)護(hù)人員,,,,,,人(其中是隊(duì)長)圓滿完成抗擊新冠肺炎疫情任務(wù)返回本地,他們受到當(dāng)?shù)厝罕娕c領(lǐng)導(dǎo)的熱烈歡迎.當(dāng)?shù)孛襟w為了宣傳他們的優(yōu)秀事跡,讓這名醫(yī)護(hù)人員和接見他們的一位領(lǐng)導(dǎo)共人站一排進(jìn)行拍照,則領(lǐng)導(dǎo)和隊(duì)長站在兩端且相鄰,而不相鄰的排法種數(shù)為( )
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,其離心率為
(1)求橢圓的方程;
(2)過橢圓的右焦點(diǎn)作直線(軸除外)與橢圓交于不同的兩點(diǎn),,在軸上是否存在定點(diǎn),使為定值?若存在,求出定點(diǎn)坐標(biāo)及定值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的最大值為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅲ)當(dāng)時(shí),令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域?yàn)?/span>若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對稱,其中為常數(shù).
(1)求的值;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體中,M是線段AB上的動(dòng)點(diǎn).
證明:平面;
若點(diǎn)M是AB中點(diǎn),求二面角的余弦值;
判斷點(diǎn)M到平面的距離是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com