對(duì)于正數(shù),,,…,有以下不等式:

(1)(2)(3)

(I)給出不等式③的證明過程。

(Ⅱ)觀察上面的三個(gè)不等式,猜想一般性結(jié)論,并用數(shù)學(xué)歸納法證明.

(I)證明:

                                                

(Ⅱ)一般性結(jié)論是:     

  證明:

①當(dāng)時(shí),結(jié)論成立.                                 

②假設(shè)時(shí)結(jié)論成立,即

                   

  即當(dāng)時(shí),

           

即當(dāng)時(shí),結(jié)論也成立。

由①②可知,結(jié)論成立。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+8x+3(a<0),對(duì)于給定的負(fù)實(shí)數(shù)a,有一個(gè)最大正數(shù)l(a),使得
x∈[0,l(a)]時(shí),不等式|f(x)|≤5都成立.
(1)當(dāng)a=-2時(shí),求l(a)的值;
(2)a為何值時(shí),l(a)最大,并求出這個(gè)最大值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)都是正數(shù)的數(shù)列{an}滿足:對(duì)于任意的自然數(shù)n,都有log0.5a1+
log0.5a2
2
+
log0.5a3
3
+…+
log0.5an
n
=n(n∈N*)

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足bn=(n+2)(
9
5
)nan
,試求數(shù)列{bn}的最大項(xiàng);
(Ⅲ)令c1=3,cn=3an-1(n≥2),Sn=
n
i=1
ci
,是否存在自然數(shù)c,k,使得
Sk+1-c
Sk-c
>3
成立?證明你的論斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)于任意的正整數(shù)n都有等式Sn=
1
4
a
2
n
+
1
2
an
(n∈N*)成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令數(shù)列bn=|c|
an
2n
,Tn
為數(shù)列{bn}的前n項(xiàng)和,若Tn>8對(duì)n∈N*恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•江西)各項(xiàng)均為正數(shù)的數(shù)列{an},a1=a,a2=b,且對(duì)滿足m+n=p+q的正整數(shù)m,n,p,q都有
am+an
(1+am)(1+an)
=
ap+aq
(1+ap)(1+aq)

(1)當(dāng)a=
1
2
,  b=
4
5
時(shí),求通項(xiàng)an;
(2)證明:對(duì)任意a,存在與a有關(guān)的常數(shù)λ,使得對(duì)于每個(gè)正整數(shù)n,都有
1
λ
an≤λ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x2
1+x+x2

(1)若(ea+2)x2+eax+ea-2≥0對(duì)|x|≤1恒成立,求a的取值范圍;
(2)求證:對(duì)于正數(shù)a、b、μ,恒有f[(
a+μb
1+μ
)
2
]-f(
a2b2
1+μ
)≥(
a+μb
1+μ
)
2
-
a2b2
1+μ

查看答案和解析>>

同步練習(xí)冊(cè)答案