已知函數(shù)f(x)= 是奇函數(shù)
(1)求實(shí)數(shù)m的值
(2)若函數(shù)f(x)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍

(1)m="2" ; (2) 

解析試題分析:(1)因?yàn)楹瘮?shù)是奇函數(shù),故由f(-x)=-f(x),結(jié)合分段函數(shù)的解析,從而有,解得m=2;(2)根據(jù)(1)中所求,利用函數(shù)的圖像,可知函數(shù)單調(diào)遞減,在單調(diào)遞增,又函數(shù)f(x)在區(qū)間上單調(diào)遞增,可知從而得出實(shí)數(shù)a的取值范圍是 
試題解析:(1)設(shè)x<0,則-x>0, f(-x)="-"  又f(x)為奇函數(shù),      3分
f(-x)=-f(x),于是x<0時(shí),f(x)= ,  m=2     6分       
(2)要使f(x)在上單調(diào)遞增,結(jié)合f(x)圖像知     10分  
1<a 故實(shí)數(shù)a的取值范圍是                 12分 
考點(diǎn):1 奇函數(shù)的性質(zhì);2 分段函數(shù)的奇偶性

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性,并給出證明;
(3)當(dāng)a>1時(shí),求使f(x)>0的x的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/a6/0/dtddp.png" style="vertical-align:middle;" />,并且滿足,且,當(dāng)時(shí),
(1).求的值;(3分)
(2).判斷函數(shù)的奇偶性;(3分)
(3).如果,求的取值范圍.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為奇函數(shù),且當(dāng)時(shí),.當(dāng)時(shí),的最大值為,最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調(diào)性(不需證明);
(3)若,存在,使,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),是否存在實(shí)數(shù)a、b、c,使同時(shí)滿足下列三個(gè)條件:(1)定義域?yàn)镽的奇函數(shù);(2)在上是增函數(shù);(3)最大值是1.若存在,求出a、b、c;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/0a/e/wr05g1.png" style="vertical-align:middle;" />的函數(shù)為實(shí)數(shù))。
(1)若是奇函數(shù),求的值;  
(2)當(dāng)是奇函數(shù)時(shí),證明對(duì)任何實(shí)數(shù)都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/16/d/knnds1.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中R.
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案