18.如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值為15.

分析 根據(jù)題意,模擬程序框圖的運(yùn)行過(guò)程,即可得出該程序運(yùn)行后輸出的S的值.

解答 解:模擬程序的運(yùn)行,可得
S=0,n=1
滿足條件n<5,執(zhí)行循環(huán)體,S=1,n=2
滿足條件n<5,執(zhí)行循環(huán)體,S=3,n=3
滿足條件n<5,執(zhí)行循環(huán)體,S=7,n=4
滿足條件n<5,執(zhí)行循環(huán)體,S=15,n=5
不滿足條件n<5,退出循環(huán),輸出S的值為15.
故答案為:15.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,以便得出正確的結(jié)果,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>1)的左焦點(diǎn)F與拋物線y2=-4x的焦點(diǎn)重合,直線x-y+$\frac{\sqrt{2}}{2}$=0與以原點(diǎn)O為圓心,以橢圓的離心率e為半徑的圓相切.
(1)求該橢圓C的方程;
(2)過(guò)點(diǎn)F的直線交橢圓于A、B兩點(diǎn),線段AB的中點(diǎn)為G,AB的垂直平分線與x軸和y軸分別交于D、E兩點(diǎn),記△GFD的面積為S1,△OED的面積為S2,問(wèn):是否存在直線AB,使得S1=S2,若存在,求直線AB的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在如圖所示的直三棱柱ABC-A1B1C1中,面AA1B1B和面AA1C1C都是邊長(zhǎng)為1的正方形且互相垂直,D為AA1的中點(diǎn),E為BC1的中點(diǎn).
(Ⅰ)證明:DE∥平面A1B1C1;
(Ⅱ)求平面C1BD和平面CBD所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|x+2|-|2x-a|,(a∈R).
(Ⅰ)當(dāng)a=3時(shí),解不等式f(x)>0;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),f(x)<3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知全集U={0,1,2,3,4,5},集合A={0,2,4},B={1,3,4},則(∁UA)∩B=( 。
A.{4}B.{1,3}C.{1,3,4,5}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=alnx+bx2,其中實(shí)數(shù)a,b為常數(shù).
(Ⅰ)已知曲線y=f(x)在x=1處取得極值$\frac{1}{2}$.
①求a,b的值;
②證明:f(x)>$\frac{x}{{e}^{x}}$;
(Ⅱ)當(dāng)b=$\frac{1}{2}$時(shí),若方程f(x)=(a+1)x恰有兩個(gè)不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合A={-1,0,1},B={x|x2-2x-3≤0},則A∩B=( 。
A.{-1,0,1}B.{0}C.(-1,1)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過(guò)點(diǎn)$E({\sqrt{3},\frac{1}{2}})$,且離心率為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓Γ的方程;
(2)直線l與圓O:x2+y2=b2相切于點(diǎn)M,且與橢圓Γ相交于不同的兩點(diǎn)A,B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={x|2x>1},B={x|x2-2x-3<0},則A∩B=(  )
A.(-1,0)B.(0,1)C.(0,3)D.(1,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案