13.已知全集U={0,1,2,3,4,5},集合A={0,2,4},B={1,3,4},則(∁UA)∩B=( 。
A.{4}B.{1,3}C.{1,3,4,5}D.{0,1,2,3,4}

分析 根據(jù)題意,由補(bǔ)集的定義可得∁UA,又由集合的交集定義計(jì)算可得答案.

解答 解:根據(jù)題意,全集U={0,1,2,3,4,5},集合A={0,2,4},
則∁UA={1,3,5},
又由B={1,3,4},
則(∁UA)∩B={1,3};
故選:B.

點(diǎn)評(píng) 本題考查集合的交并補(bǔ)混合運(yùn)算,掌握集合補(bǔ)集、交集的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象向左平移φ(φ>0)個(gè)單位后,恰好得到函數(shù)的y=sin2x的圖象,則φ的最小值為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-^{2}}{2})^{2}]}$.現(xiàn)有周長(zhǎng)為4+$\sqrt{10}$的△ABC滿(mǎn)足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:
($\sqrt{2}$+1),試用以上給出的公式求得△ABC的面積為(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{5}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow$=(cosθ,$\frac{1}{2}$),且$\overrightarrow{a}$∥$\overrightarrow$,則2cos($\frac{3π}{2}$+2θ)+$\frac{1}{2}$cos2θ的值為(  )
A.$\frac{13}{10}$B.$\frac{19}{10}$C.$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S10=110,且a1,a2,a4成等比數(shù)列
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿(mǎn)足${b_n}=\frac{1}{{({{a_n}-1})({{a_n}+1})}}$,若數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline z$,若$\frac{1-i}{z•\overline z+i}$為純虛數(shù),則|z|=( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知i為虛數(shù)單位,z(2i-1)=1+i,則復(fù)數(shù)z的共軛復(fù)數(shù)為(  )
A.$-\frac{1}{5}-\frac{3}{5}i$B.$\frac{1}{5}+\frac{3}{5}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知命題p:?x∈R,2x+$\frac{x}{2}$=0;命題q:?x>0,x-x2<0,則下列命題是真命題的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∨q

查看答案和解析>>

同步練習(xí)冊(cè)答案