【題目】m為何值時(shí),.
(1)有且僅有一個(gè)零點(diǎn);
(2)有兩個(gè)零點(diǎn)且均比-1大.
【答案】(1) m=4或m=-1. (2) m的取值范圍為(-5,-1)
【解析】
本試題主要是考查了函數(shù)的零點(diǎn),利用方程的解得到零點(diǎn)的證明。
(1)f(x)=x2+2mx+3m+4有且僅有一個(gè)零點(diǎn)方程f(x)=0有兩個(gè)相等實(shí)根Δ=0,解得。
(2)設(shè)f(x)的兩個(gè)零點(diǎn)分別為x1,x2,
則x1+x2=-2m,x1·x2=3m+4.
利用韋達(dá)定理和判別式得到范圍。
解 (1)f(x)=x2+2mx+3m+4有且僅有一個(gè)零點(diǎn)方程f(x)=0有兩個(gè)相等實(shí)根Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,
∴m=4或m=-1. ……………… 5分
(2)設(shè)f(x)的兩個(gè)零點(diǎn)分別為x1,x2,
則x1+x2=-2m,x1·x2=3m+4.
由題意,在
∴-5<m<-1.故m的取值范圍為(-5,-1).………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)過橢圓左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線過坐標(biāo)原點(diǎn)且直線與的斜率互為相反數(shù),直線與橢圓交于兩點(diǎn)且均不與點(diǎn)重合,設(shè)直線的斜率為,直線的斜率為.證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,若函數(shù)有三個(gè)不同的零點(diǎn),,(其中),則的取值范圍為__________.
【答案】
【解析】如圖:
,,作出函數(shù)圖象如圖所示
,,作出函數(shù)圖象如圖所示
,由有三個(gè)不同的零點(diǎn)
,如圖
令
得
為滿足有三個(gè)零點(diǎn),如圖可得
,
點(diǎn)睛:本題考查了函數(shù)零點(diǎn)問題,先由導(dǎo)數(shù)求出兩個(gè)函數(shù)的單調(diào)性,繼而畫出函數(shù)圖像,再由函數(shù)的零點(diǎn)個(gè)數(shù)確定參量取值范圍,將問題轉(zhuǎn)化為函數(shù)的兩根問題來求解,本題需要化歸轉(zhuǎn)化,函數(shù)的思想,零點(diǎn)問題等較為綜合,有很大難度。
【題型】填空題
【結(jié)束】
17
【題目】已知等比數(shù)列的前項(xiàng)和為,且滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖一塊長方形區(qū)域ABCD,AD=2(km),AB=1(km).在邊AD的中點(diǎn)O處,有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠EOF始終為,設(shè)∠AOE=,探照燈O照射在長方形ABCD內(nèi)部區(qū)域的面積為S.
(1)當(dāng)0≤時(shí),寫出S關(guān)于的函數(shù)表達(dá)式;
(2)若探照燈每9分鐘旋轉(zhuǎn)“一個(gè)來回”(OE自OA轉(zhuǎn)到OC,再回到OA,稱“一個(gè)來回”,忽略OE在OA及OC反向旋轉(zhuǎn)時(shí)所用時(shí)間),且轉(zhuǎn)動(dòng)的角速度大小一定,設(shè)AB邊上有一點(diǎn)G,且∠AOG,求點(diǎn)G在“一個(gè)來回”中,被照到的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于,②,③,④,⑤與⑥,選擇恰當(dāng)?shù)年P(guān)系式序號(hào)填空:
(1)角為第一象限角的充要條件是_____;
(2)角為第二象限角的充要條件是_____;
(3)角為第三象限角的充要條件是_____;
(4)角為第四象限角的充要條件是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱臺(tái)中, 底面,平面平面為的中點(diǎn).
(1)證明: ;
(2)若,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足:對(duì)于任意實(shí)數(shù)都有恒成立,且當(dāng)時(shí),.
(Ⅰ)判定函數(shù)的單調(diào)性,并加以證明;
(Ⅱ)設(shè),若函數(shù)有三個(gè)零點(diǎn)從小到大分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)工會(huì)利用 “健步行”開展健步走積分獎(jiǎng)勵(lì)活動(dòng).會(huì)員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分).記年齡不超過40歲的會(huì)員為類會(huì)員,年齡大于40歲的會(huì)員為類會(huì)員.為了解會(huì)員的健步走情況,工會(huì)從兩類會(huì)員中各隨機(jī)抽取名會(huì)員,統(tǒng)計(jì)了某天他們健步走的步數(shù),并將樣本數(shù)據(jù)分為, , , , , , , , 九組,將抽取的類會(huì)員的樣本數(shù)據(jù)繪制成頻率分布直方圖, 類會(huì)員的樣本數(shù)據(jù)繪制成頻率分布表(圖、表如下所示).
(Ⅰ)求和的值;
(Ⅱ)從該地區(qū)類會(huì)員中隨機(jī)抽取名,設(shè)這名會(huì)員中健步走的步數(shù)在千步以上(含千步)的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(Ⅲ)設(shè)該地區(qū)類會(huì)員和類會(huì)員的平均積分分別為和,試比較和的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)一年中有31天的月份的全體;
(2)大于小于12.8的整數(shù)的全體;
(3)梯形的全體構(gòu)成的集合;
(4)所有能被3整除的數(shù)的集合;
(5)方程的解組成的集合;
(6)不等式的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com