【題目】已知數(shù)列滿足 .

(1)證明:當(dāng)時,;

(2)證明: ();

(3)證明:為自然常數(shù).

【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析.

【解析】

1)用數(shù)學(xué)歸納法證明,先證成立,再假設(shè)當(dāng)時結(jié)論成立,即,再證當(dāng)成立,這一步需要用到這一假設(shè)

2)先觀察證明的恒等式,發(fā)覺右側(cè)出現(xiàn)了裂項的基本形式,故可考慮將式子作如下變形處理,通過移項可得,再采用疊加法即可求得

由遞推公式和(1)的結(jié)論有

變形得,兩邊同取對數(shù)得,再利用導(dǎo)數(shù)公式,可得

,再采用累加法通過變形最后即可得到

(1)(用數(shù)學(xué)歸納法證明)

①當(dāng)時,,

所以結(jié)論成立;

②假設(shè)當(dāng)時結(jié)論成立,即

則當(dāng)

所以時,結(jié)論成立.

由①②可知,當(dāng)時,成立

(2)由題意得

所以

所以

,

,

……

,

以上各式兩邊分別相加可得,

,所以

(3)由題意得

,

,(利用了導(dǎo)數(shù)公式的性質(zhì))

,

由累加法得

,

所以

所以

,

所以為自然常數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市調(diào)硏機構(gòu)對該市工薪階層對樓市限購令態(tài)度進行調(diào)查,抽調(diào)了50名市民,他們月收入頻數(shù)分布表和對樓市限購令贊成人數(shù)如下表:

月收入(單位:百元)

頻數(shù)

5

10

5

5

頻率

0.1

0.2

0.1

0.1

贊成人數(shù)

4

8

12

5

2

1

1)若所抽調(diào)的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.

2)若從收入(單位:百元)在的被調(diào)查者中隨機選取2人進行追蹤調(diào)查,選中的2人中恰有人贊成樓市限購令,求的分布列與數(shù)學(xué)期望.

3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成樓市限購令,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是異面直線,是空間一定點,下列命題中正確的個數(shù)為(

①過點總可以作一條直線與都垂直;

②過點總可以作一個平面與都平行;

③過點總可以作一條直線與之一垂直于與另一條平行;

④過點總可以作一個平面與 之一垂直于與另一條平行;

⑤過點總可以作一個平面與直線同時垂直

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2021年我省將實施新高考,新高考“依據(jù)統(tǒng)一高考成績、高中學(xué)業(yè)水平考試成績,參考高中學(xué)生綜合素質(zhì)評價信息”進行人才選拔。我校2018級高一年級一個學(xué)習(xí)興趣小組進行社會實踐活動,決定對某商場銷售的商品A進行市場銷售量調(diào)研,通過對該商品一個階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷售量(單位:百件)與銷售價格(元/件)近似滿足關(guān)系式,其中為常數(shù)已知銷售價格為3元/件時,每日可售出該商品10百件。

(1)求函數(shù)的解析式;

(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結(jié)果請你試確定該商品銷售價格的值,使該商場每日銷售該商品所獲得的利潤(單位:百元)最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,底面為菱形,,是邊長為2的正三角形,平面⊥平面的中點,的中點.

1)求證:平面;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市環(huán)保部門為了讓全市居民認(rèn)識到冬天燒煤取暖對空氣數(shù)值的影響,進而喚醒全市人民的環(huán)保節(jié)能意識。對該市取暖季燒煤天數(shù)與空氣數(shù)值不合格的天數(shù)進行統(tǒng)計分析,得出下表數(shù)據(jù):

(天)

9

8

7

5

4

(天)

7

6

5

3

2

(1)以統(tǒng)計數(shù)據(jù)為依據(jù),求出關(guān)于的線性回歸方程;

2)根據(jù)(1)求出的線性回歸方程,預(yù)測該市燒煤取暖的天數(shù)為20時空氣數(shù)值不合格的天數(shù).

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺中,分別為的中點.

)求證:平面

)若平面,,

,求平面與平面所成角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲袋中裝有2個白球,3個黑球,乙袋中裝有1個白球,2個黑球,這些球除顏色外完全相同.

1)從兩袋中各取1個球,記事件:取出的2個球均為白球,求;

2)每次從甲、乙兩袋中各取2個球,若取出的白球不少于2個就獲獎(每次取完后將球放回原袋),共取了3次,記獲獎次數(shù)為,寫出的分布列并求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長,r為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為 ( )

A. V=abc B. V=Sh

C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個面的面積,r為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是r)

查看答案和解析>>

同步練習(xí)冊答案