19.已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:當(dāng)$x∈[{\frac{1}{2},2}]$時(shí),函數(shù)f(x)=x+$\frac{1}{x}>\frac{1}{c}$恒成立.如果p或q為真命題,p且q為假命題,求c的取值范圍( 。
A.$({0,\frac{1}{2}})$B.$[{\frac{1}{2},1}]$C.$({0,\frac{1}{2}}]∪[{1,+∞})$D.(2,+∞)

分析 求出命題p或q為真命題時(shí)c的范圍,由p或q為真命題,p且q為假命題,得到p與q一真一假,分兩張情況考慮:p真q假;p假q真,分別求出c的范圍即可.

解答 解:若命題p:函數(shù)y=cx為減函數(shù)為真命題,則0<c<1,
當(dāng)x∈[$\frac{1}{2}$,2]時(shí),函數(shù)f(x)=x+$\frac{1}{x}$≥2,(當(dāng)且僅當(dāng)x=1時(shí)取等號(hào)),
若命題q為真命題,則$\frac{1}{c}$<2,
結(jié)合c>0,可得c>$\frac{1}{2}$,
∵p∨q為真命題,p∧q為假命題,
∴p與q一真一假,
當(dāng)p真q假時(shí),0<c≤$\frac{1}{2}$,
當(dāng)p假q真時(shí),c≥1,
故c的范圍為(0,$\frac{1}{2}$]∪[1,+∞),
故選:C.

點(diǎn)評(píng) 此題考查了復(fù)合命題的真假,熟練掌握p∨q與p∧q和命題真假的關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.函數(shù)f(x)=2x和g(x)=x3的部分圖象的示意圖如圖所示.設(shè)兩函數(shù)的圖象交于點(diǎn)A(x1,y1)、B(x2,y2),x1<x2
(1)請(qǐng)指出示意圖中曲線C1、C2分別對(duì)應(yīng)哪一個(gè)函數(shù)?
(2)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},指出a、b的值,并說(shuō)明理由;
(3)結(jié)合函數(shù)圖象示意圖,判斷f(6)、g(6)、f(2010)、g(2010)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=AD=4,BC=2,若P為線段CD上一點(diǎn),且滿足$\overrightarrow{DP}=λ\overrightarrow{DC}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=5,則$|{\overrightarrow{PA}}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知下列命題:
(1)若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c(\overrightarrow a≠\overrightarrow 0)$,則$\overrightarrow b$=$\overrightarrow c$;
(2)若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$;
(3)若不平行的兩個(gè)非零向量$\overrightarrow{a}$,$\overrightarrow$,滿足|$\overrightarrow a$|=|$\overrightarrow b|$,則($\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=0;
(4)若$\overrightarrow{a}$與$\overrightarrow$平行,則$\overrightarrow a$•$\overrightarrow b$=|$\overrightarrow a$||$\overrightarrow b$|;
其中真命題的個(gè)數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(Ⅰ)已知奇函數(shù)f(x)的定義域?yàn)閇-2,2],且在區(qū)間[-2,0]上遞減,求滿足f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值范圍.
(Ⅱ)已知f(x)為定義在[a-1,2a+1]上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=ex+1,則f(2x+1)>f($\frac{x}{2}$+1)的解x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=$\frac{x}{(1-x)^{2}}$的單調(diào)遞增區(qū)間是( 。
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.x2-4x+y2=0的圓心到直線x+$\sqrt{3}$y-4=0的距離是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.復(fù)數(shù)z=a3-2a+(m+a)i(a≥0,m∈R)的實(shí)部大于虛部,則m的取值范圍為(  )
A.(-∞,-2)B.(-2,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知?jiǎng)訄A過(guò)定點(diǎn)R(0,2),且在x軸上截得線段MN的長(zhǎng)為4,直線l:y=kx+t(t>0)交y軸于點(diǎn)Q.
(1)求動(dòng)圓圓心的軌跡E的方程;
(2)直線l與軌跡E交于A,B兩點(diǎn),分別以A,B為切點(diǎn)作軌跡E的切線交于點(diǎn)P,若|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|sin∠APB=|$\overrightarrow{PQ}$|•|$\overrightarrow{AB}$|.試判斷實(shí)數(shù)t所滿足的條件,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案