分析 由題意可知f(x)=x2-2mx+3在(-∞,1)上是減函數(shù),且f(x)>0在(-∞,1)上恒成立.列出不等式組解出m的范圍.
解答 解:令f(x)=x2-2mx+3,
∵函數(shù)$y={log_{\frac{1}{4}}}({x^2}-2mx+3)$在區(qū)間(-∞,1)上是增函數(shù),
∴f(x)=x2-2mx+3在(-∞,1)上是減函數(shù),且f(x)>0在(-∞,1)上恒成立.
∴-$\frac{-2m}{2}$≥1,且f(1)≥0,即4-2m≥0,
解得1≤m≤2.
故答案為[1,2].
點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)的單調(diào)性,特別要考慮定義域的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)是R上的增函數(shù) | B. | f(x)可能不存在單調(diào)的增區(qū)間 | ||
C. | f(x)不可能有單調(diào)減區(qū)間 | D. | f(x)一定有單調(diào)增區(qū)間 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-2] | B. | (-∞,-2)∪(2,+∞) | C. | (2,+∞) | D. | (-2,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com