【題目】若1路、2路公交車均途經(jīng)泉港一中校門口,其中1路公交車每10分鐘一趟,2路公交車每20分鐘一趟,某生去坐這2趟公交車回家,則等車不超過5分鐘的概率是( )

A. B. C. D.

【答案】C

【解析】

設(shè)1路車到達時間為x2路到達時間為y.(x,y)可以看做平面中的點,利用幾何概型即可得到結(jié)果.

設(shè)1路車到達時間為x2路到達時間為y.(x,y)可以看做平面中的點,

試驗的全部結(jié)果所構(gòu)成的區(qū)域為Ω{x,y|0x100y20},這是一個長方形區(qū)域,面積為S10×20200

A表示某生等車時間不超過5分鐘,

所構(gòu)成的區(qū)域為a{x,y|0x50y5}

即圖中的陰影部分,面積為S′=125,

代入幾何概型概率公式,可得

PA

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了考核甲,乙兩部門的工作情況,隨機訪問了50位市民,根據(jù)這50位市民對這兩部門的評分(評分越高表明市民的評價越高),繪制莖葉圖如下:

1)分別估計該市的市民對甲,乙兩部門評分的中位數(shù);

2)分別估計該市的市民對甲,乙兩部門的評分高于90的概率;

3)根據(jù)莖葉圖分析該市的市民對甲,乙兩部門的評價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黑板上寫有,1,2,…,666,這666個正整數(shù),第一步劃去最前面的八個數(shù):1,2,…,8,,并在666后面寫上1,2,…,8的和36;第二步再劃去最前面的八個數(shù):9,10,…,16,并在最后面寫上9,10,…,16的和100;如此繼續(xù)下去(即每一步劃去最前面的八個數(shù),并在最后寫上劃去的八個數(shù)的和).

(1)問:經(jīng)過多少步后,黑板上只剩下一個數(shù)?

(2)當(dāng)黑板上只剩下一個數(shù)時,求出在黑板上出現(xiàn)過的所有數(shù)的和(如果一個數(shù)多次出現(xiàn)需重復(fù)計算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)集,其中 ,定義向量集.若對于任意,使得,則稱具有性質(zhì).例如具有性質(zhì)

)若,且具有性質(zhì),求的值.

)若具有性質(zhì),求證: ,且當(dāng)時,

)若具有性質(zhì),且 為常數(shù)),求有窮數(shù)列, , 的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】時下,租車已經(jīng)成為新一代的流行詞,租車自駕游也慢慢流行起來,某小車租車點的收費標(biāo)準(zhǔn)是,不超過2天按照300元計算;超過兩天的部分每天收費標(biāo)準(zhǔn)為100元(不足1天的部分按1天計算).有甲乙兩人相互獨立來該租車點租車自駕游(各租一車一次),設(shè)甲、乙不超過2天還車的概率分別為;2天以上且不超過3天還車的概率分別;兩人租車時間都不會超過4天.

(1)求甲所付租車費用大于乙所付租車費用的概率;

(2)設(shè)甲、乙兩人所付的租車費用之和為隨機變量,求的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1處取極值,在點處的切線方程

2)當(dāng),有唯一的零點,

表示不超過的最大整數(shù),如

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)路處建造圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12 m,高為4 m.養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽.現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4 m(高不變);二是高度增加4 m(底面直徑不變)

1)分別計算按這兩種方案所建的倉庫的體積;

2)分別計算按這兩種方案所建的倉庫的表面積(不含底面積);

3)哪個方案更經(jīng)濟些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極值,對, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案