【題目】為提高衡水市的整體旅游服務(wù)質(zhì)量,市旅游局舉辦了旅游知識(shí)競(jìng)賽,參賽單位為本市內(nèi)各旅游協(xié)會(huì),參賽選手為持證導(dǎo)游.現(xiàn)有來(lái)自甲旅游協(xié)會(huì)的導(dǎo)游3名,其中高級(jí)導(dǎo)游2名;乙旅游協(xié)會(huì)的導(dǎo)游3名,其中高級(jí)導(dǎo)游1名.從這6名導(dǎo)游中隨機(jī)選擇2人參加比賽.
(1)求選出的2名都是高級(jí)導(dǎo)游的概率;
(2)為了進(jìn)一步了解各旅游協(xié)會(huì)每年對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)情況,經(jīng)多次統(tǒng)計(jì)得到,甲旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)范圍是(單位:萬(wàn)元),乙旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)范圍是(單位:萬(wàn)元),求甲旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)不低于乙旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)概率.
【答案】(1);(2)
【解析】
(1)用列舉法求出基本事件數(shù),即可計(jì)算所求的概率值;
(2)根據(jù)題意知,所求概率為幾何概型問(wèn)題,由幾何概型計(jì)算公式即可求出結(jié)果.
(1)設(shè)來(lái)自甲旅游協(xié)會(huì)的3名導(dǎo)游為,其中為高級(jí)導(dǎo)游,
來(lái)自乙旅游協(xié)會(huì)的3名導(dǎo)游為,其中為高級(jí)導(dǎo)游,
從這6名導(dǎo)游中隨機(jī)選擇2人參加比賽,有下列基本情況:,,,,;
;;;共15種,
其中選出的2名都是高級(jí)導(dǎo)游的有,,,共3種
所以選出的2人都是高級(jí)導(dǎo)游的概率為.
(2)依題意,設(shè)甲旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)為(單位:萬(wàn)元),
乙旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)為(單位:萬(wàn)元),則且,
則,屬于幾何概型問(wèn)題
作圖,由圖可知,,
所求概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】合肥一中、六中為了加強(qiáng)交流,增進(jìn)友誼,兩校準(zhǔn)備舉行一場(chǎng)足球賽,由合肥一中版畫(huà)社的同學(xué)設(shè)計(jì)一幅矩形宣傳畫(huà),要求畫(huà)面面積為,畫(huà)面的上、下各留空白,左、右各留空白.
(1)如何設(shè)計(jì)畫(huà)面的高與寬的尺寸,才能使宣傳畫(huà)所用紙張面積最小?
(2)設(shè)畫(huà)面的高與寬的比為,且,求為何值時(shí),宣傳畫(huà)所用紙張面積最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P是曲線(xiàn)上的點(diǎn),Q是曲線(xiàn)上的點(diǎn),曲線(xiàn)與曲線(xiàn)關(guān)于直線(xiàn)對(duì)稱(chēng),M為線(xiàn)段PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),則的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面四邊形ABCD中,,,,(如圖1),若將沿對(duì)角線(xiàn)BD折疊,使(如圖2).請(qǐng)?jiān)趫D2中解答下列問(wèn)題.
(1)證明:;
(2)求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)和曲線(xiàn)的極坐標(biāo)方程;
(2)已知射線(xiàn)(),將射線(xiàn)順時(shí)針?lè)较蛐D(zhuǎn)得到:,且射線(xiàn)與曲線(xiàn)交于兩點(diǎn),射線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬(wàn)元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投資0.25萬(wàn)元,經(jīng)預(yù)測(cè)可知,市場(chǎng)對(duì)這種產(chǎn)品的年需求量為500件,當(dāng)出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時(shí),銷(xiāo)售所得的收入約為(萬(wàn)元).
(1)若該公司的年產(chǎn)量為x(單位:百件),試把該公司生產(chǎn)并銷(xiāo)售這種產(chǎn)品所得的年利潤(rùn)表示為年產(chǎn)量x的函數(shù);
(2)當(dāng)這種產(chǎn)品的年產(chǎn)量為多少時(shí),當(dāng)年所得利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(x+)+sin(x﹣)+cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,f(A)=,△ABC的面積為,AB=,求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的參數(shù)方程為(為參數(shù)),圓的極坐標(biāo)方程為.
(1)寫(xiě)出直線(xiàn)的方程和圓的直角坐標(biāo)方程;
(2)若點(diǎn)為圓上一動(dòng)點(diǎn),求點(diǎn)到直線(xiàn)的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足.
(1)若,證明:
(i)當(dāng)時(shí),有;
(ii)當(dāng)時(shí),有.
(2)若,證明:當(dāng)時(shí),有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com