分析 (1)由題意可知:設橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),半焦距為c,由題意可知:e=$\frac{c}{a}$=$\frac{1}{2}$,即a=2c,a+c=3,b2=a2-c2,即可求得a和b的值,即可求得橢圓的標準方程;
(2)設直線l的方程為y=kx+m,代入橢圓方程,由△>0 求得3+4k2>m2,由韋達定理求得x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1•x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,由以AB為直徑的圓過原點,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,由向量數量積的坐標表示x1•x2+y1•y2=0,求得7m2=12+12k2,代入即可求得m2>$\frac{3}{4}$,7m2=12+12k2≥12,即可求得截距y軸上截距的取值范圍.
解答 解:(1)由橢圓的焦點在x軸上,則設橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),半焦距為c.
由橢圓的離心率e=$\frac{c}{a}$=$\frac{1}{2}$,即a=2c,
由橢圓C上的點到右焦點的最大距離3,
∴a+c=3,解得:a=2,c=1,
由b2=a2-c2=3,
∴橢圓C的標準方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)設直線l的方程為y=kx+m,
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3+4k2)x2+8kmx+4m2-12=0,
△=(8km)2-4(3+4k2)(4m2-12)>0,整理得:3+4k2>m2,
設A(x1,y1),B(x2,y2),則x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1•x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,
y1•y2=(kx1+m)(kx2+m)=k2x1•x2+km(x1+x2)+m2,
以AB為直徑的圓過原點,
∴OA⊥OB,則$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
∴x1•x2+y1•y2=0,即x1•x2+k2x1•x2+km(x1+x2)+m2=0,
則(1+k2)x1•x2+km(x1+x2)+m2=0,
(1+k2)•$\frac{4{m}^{2}-12}{3+4{k}^{2}}$-km•$\frac{8km}{3+4{k}^{2}}$+m2=0,化簡得:7m2=12+12k2,
將k2=$\frac{7}{12}$m2-1,代入3+4k2>m2,3+4($\frac{7}{12}$m2-1)>m2,
解得:m2>$\frac{3}{4}$,
又由7m2=12+12k2≥12,
從而m2≥$\frac{12}{7}$,m≥$\frac{2\sqrt{21}}{7}$或m≤-$\frac{2\sqrt{21}}{7}$.
∴實m的取值范圍(-∞,-$\frac{2\sqrt{21}}{7}$]∪[$\frac{2\sqrt{21}}{7}$,+∞).
點評 本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查韋達定理及向量數量積的坐標表示,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 5 | D. | 1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com