【題目】第屆冬奧會將于年在中國北京和張家口舉行,為宣傳冬奧會,讓更多的人了解、喜愛冰雪項(xiàng)目,某大學(xué)舉辦了冬奧會知識競賽,并從中隨機(jī)抽取了名學(xué)生的成績,繪制成如圖所示的頻率分布直方圖.
(Ⅰ)試根據(jù)頻率分布直方圖估計(jì)這名學(xué)生的平均成績(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替);
(Ⅱ)若采用分層抽樣的方法從、這兩個分?jǐn)?shù)段中抽取人,求從這兩個分?jǐn)?shù)段中應(yīng)分別抽取多少人?
(Ⅲ)從(Ⅱ)中抽取的人中隨機(jī)抽取人到某社區(qū)開展冬奧會宜傳活動,求抽取的人成績均在中的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于命題的說法錯誤的是( )
A.命題“若,則”的逆否命題為“若,則”
B.“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件
C.扇形的周長為,則當(dāng)其圓心角的弧度數(shù)為時(shí),其面積最大
D.若扇形的周長為,面積為,則該扇形的圓心角的弧度數(shù)為或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3個型零件和1個型零件配套組成,每個工人每小時(shí)能加工5個型零件或者3個型零件,現(xiàn)在把這些工人分成兩組同時(shí)工作(分組后人數(shù)不再進(jìn)行調(diào)整),每組加工同一種型號的零件.設(shè)加工型零件的工人數(shù)為名.
(1)設(shè)完成、型零件加工所需的時(shí)間分別為、小時(shí),寫出與的解析式;
(2)當(dāng)取何值時(shí),完成全部生產(chǎn)任務(wù)的時(shí)間最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n為正整數(shù),集合A=.對于集合A中的任意元素和,記
M()=.
(Ⅰ)當(dāng)n=3時(shí),若, ,求M()和M()的值;
(Ⅱ)當(dāng)n=4時(shí),設(shè)B是A的子集,且滿足:對于B中的任意元素,當(dāng)相同時(shí),M()是奇數(shù);當(dāng)不同時(shí),M()是偶數(shù).求集合B中元素個數(shù)的最大值;
(Ⅲ)給定不小于2的n,設(shè)B是A的子集,且滿足:對于B中的任意兩個不同的元素,
M()=0.寫出一個集合B,使其元素個數(shù)最多,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為點(diǎn)的坐標(biāo)為,為坐標(biāo)原點(diǎn),是等腰直角三角形.
(1)求橢圓的方程;
(2)經(jīng)過點(diǎn)作直線交橢圓于兩點(diǎn),求面積的最大值;
(3)是否存在直線交橢圓于兩點(diǎn),使點(diǎn)為的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的偶函數(shù),對于任意都有成立,當(dāng),且時(shí),都有.給出以下三個命題:
①直線是函數(shù)圖像的一條對稱軸;
②函數(shù)在區(qū)間上為增函數(shù);
③函數(shù)在區(qū)間上有五個零點(diǎn).
問:以上命題中正確的個數(shù)有( ).
A.個B.個C.個D.個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體ABCD的每個頂點(diǎn)都在球O的表面上,AB是球O的一條直徑,且AC=2,BC=4,現(xiàn)有下面四個結(jié)論:
①球O的表面積為20π;②AC上存在一點(diǎn)M,使得AD∥BM;
③若AD=3,則BD=4;④四面體ABCD體積的最大值為.
其中所有正確結(jié)論的編號是( )
A.①②B.②④C.①④D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com