精英家教網 > 高中數學 > 題目詳情

【題目】四面體ABCD的每個頂點都在球O的表面上,AB是球O的一條直徑,AC=2,BC=4,現有下面四個結論:

①球O的表面積為20π;AC上存在一點M,使得ADBM;

③若AD=3,BD=4;④四面體ABCD體積的最大值為.

其中所有正確結論的編號是( )

A.①②B.②④C.①④D.①③④

【答案】C

【解析】

AC=2,BC=4可求得直徑為AB=2,從而可判斷①③;由AD與平面ABC相交可判斷②;由D到平面ABC的距離的最大值為球的半徑可判斷④.

因為AB是球O的一條直徑,所以ACBC,ADBD,所以AB=2.

AD=3,則BD=,③錯;

球的半徑為,O的表面積為×()2=20π ,①對;

因為AD與平面ABC相交,所以AC上找不到一點M,使得ADBM.,②錯;

因為D到平面ABC的距離的最大值為球的半徑,所以四面體ABCD體積的最大值為

××2×4×=.④對,

即所有正確結論的編號是①④.

故選:C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數,下述四個結論:

是偶函數;

的最小正周期為

的最小值為0;

上有3個零點

其中所有正確結論的編號是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】屆冬奧會將于年在中國北京和張家口舉行,為宣傳冬奧會,讓更多的人了解、喜愛冰雪項目,某大學舉辦了冬奧會知識競賽,并從中隨機抽取了名學生的成績,繪制成如圖所示的頻率分布直方圖.

(Ⅰ)試根據頻率分布直方圖估計這名學生的平均成績(同一組數據用該組區(qū)間的中點值代替);

(Ⅱ)若采用分層抽樣的方法從、這兩個分數段中抽取人,求從這兩個分數段中應分別抽取多少人?

(Ⅲ)從(Ⅱ)中抽取的人中隨機抽取人到某社區(qū)開展冬奧會宜傳活動,求抽取的人成績均在中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在多面體中,,,且平面平面.

(1)設點為線段的中點,試證明平面;

(2)若直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)新研發(fā)了一種產品,產品的成本由原料成本及非原料成本組成.每件產品的非原料成本(元)與生產該產品的數量(千件)有關,經統(tǒng)計得到如下數據:

1

2

3

4

5

6

7

8

112

61

44.5

35

30.5

28

25

24

根據以上數據,繪制了散點圖.

觀察散點圖,兩個變量不具有線性相關關系,現考慮用反比例函數模型和指數函數模型分別對兩個變量的關系進行擬合.已求得用指數函數模型擬合的回歸方程為,的相關系數.

參考數據(其中):

183.4

0.34

0.115

1.53

360

22385.5

61.4

0.135

(1)用反比例函數模型求關于的回歸方程;

(2)用相關系數判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計產量為10千件時每件產品的非原料成本;

(3)該企業(yè)采取訂單生產模式(根據訂單數量進行生產,即產品全部售出).根據市場調研數據,若該產品單價定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產品的原料成本為10元,根據(2)的結果,企業(yè)要想獲得更高利潤,產品單價應選擇100元還是90元,請說明理由.

參考公式:對于一組數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,,相關系數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知是邊長為3的正方形,平面,,且,.

(1)求幾何體的體積;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,已知側面,,,點在棱上.

)求證:平面

)試確定點的位置,使得二面角的余弦值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4—4:坐標系與參數方程]

在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求的直角坐標方程;

2)若有且僅有三個公共點,求的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個多面體的三視圖正視圖、側視圖、俯視圖如圖所示,MN分別是,的中點.

1)求證:平面;

2)求證:平面;

3)若這個多面體的六個頂點A,B,C,,都在同一個球面上,求這個球的體積.

查看答案和解析>>

同步練習冊答案