1.函數(shù)y=$\frac{x}{1+x}$的圖象是(  )
A.B.C.D.

分析 根據(jù)圖象的平移法則即可得到.

解答 解:函數(shù)y=$\frac{x}{1+x}$=1-$\frac{1}{x+1}$,
則y=$\frac{x}{1+x}$的圖象是由y=-$\frac{1}{x}$的圖象先向左平移一個單位,再向上平移一個單位得到的,
故選:A

點評 本題考查了圖象的變化,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合A={1,2},B={2,4},則A∪B=(  )
A.{2}B.{1,2}C.{1,2,4}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)f(x)為偶函數(shù),在[0,+∞)是單調(diào)函數(shù),則滿足f(2x)=f($\frac{x+1}{x+4}$)的所有x之和為( 。
A.8B.9C.-8D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有相同的焦點,且離心率為$\frac{\sqrt{5}}{5}$的橢圓標(biāo)準(zhǔn)方程為$\frac{x^2}{25}+\frac{y^2}{20}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過兩直線3x+y-1=0與x+2y-7=0的交點,且與第二條直線垂直的直線方程為( 。
A.2x-y+6=0B.2x+y-6=0C.x-3y+13=0D.x-3y+7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知θ∈($\frac{π}{2}$,π),sinθ=$\frac{3}{5}$,則sin(θ+$\frac{5π}{2}$)等于( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在三棱柱ABC-A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1,CC1上的點,且BE=B1E,C1F=$\frac{1}{3}$CC1,則異面直線A1E與AF
所成角的余弦值為$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足a1=1,an+1=3an+1
(1)證明{an+$\frac{1}{2}$}是等比數(shù)列,并求{an}的通項公式
(2)若bn=(2n-1)(2an+1),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.復(fù)數(shù)z與復(fù)數(shù)i(1-2i)互為共軛復(fù)數(shù),則z=( 。
A.-2+iB.-2-iC.2-iD.2+i

查看答案和解析>>

同步練習(xí)冊答案