8.求滿足下列條件的直線的方程.
(1)經(jīng)過點(diǎn)經(jīng)過點(diǎn)A(3,-3),B(0,2);
(2)經(jīng)過點(diǎn)A(3,2),且與直線4x+y-2=0平行.

分析 (1)寫出直線的兩點(diǎn)式方程,化為一般式即可.
(2)求出直線的斜率,利用直線的點(diǎn)斜式方程求法即可.

解答 (1)解:過點(diǎn)A(3,-3),B(0,2)的兩點(diǎn)式方程為:$\frac{y-2}{-3-2}$=$\frac{x-0}{3-0}$,
整理,得5x+3y-6=0,為所求的直線方程;
(2)解:因?yàn)橹本4x+y-2=0的斜率為-4,
所以所求直線的斜率是-4,
因?yàn)樗笾本過點(diǎn)A(3,2)
所以所求的直線方程是y-2=-4(x-3),即4x+y-14=0.

點(diǎn)評 本題考查了待定系數(shù)法求直線的方程,直線方程的點(diǎn)斜式,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}滿足:a2=3,a5-2a3+1=0.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:{bn}=(-1)nan+n(n∈N*),求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義符號函數(shù)sgn(x)=$\left\{\begin{array}{l}{\stackrel{1,x>0}{0,x=0}}\\{-1,x<0}\end{array}\right.$,
設(shè)f(x)=$\frac{sgn(\frac{1}{2}-x)+1}{2}$•f1(x)+$\frac{sgn(\frac{1}{2}-x)+1}{2}$•f2(x),x∈[0,1],其中${f_1}(x)=x+\frac{1}{2}$,f2(x)=2(1-x),若$f({f(a)})∈[{0,\frac{1}{2}}]$,則實(shí)數(shù)a的取值范圍是{$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.過點(diǎn)$(2\sqrt{2},0)$直線l與曲線$y=\sqrt{4-{x^2}}$交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△ABO的面積取最大值時(shí),直線l的斜率等于-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=$\frac{1}{3}{x^3}+\frac{a}{2}{x^2}+({a-1})x+1$,x∈R,其中參數(shù)a∈R.
(Ⅰ)是否存在a,使得f(x)在R上單調(diào)遞增,若存在求a的取值集合,不存在說明理由;
(Ⅱ)若過點(diǎn)P(0,1)且與y=f(x)相切的直線有且只有一條,求a的值;
(Ⅲ)在(Ⅱ)的條件下,設(shè)點(diǎn)Q(m,n),且m>0,證明:若過Q且與曲線y=f(x)相切的直線有三條,則-m+1<n<$\frac{1}{3}{m^3}$-m+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等比數(shù)列{an}中,a1=1,a4=8,則公比q等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a>0,b>0且a≠b,設(shè)x=$\frac{{\sqrt{a}+\sqrt}}{2}$,$y=\sqrt{a+b}$,$z=\root{4}{ab}$,則x,y,z的大小關(guān)系是( 。
A.y>x>zB.x>y>zC.y>z>xD.z>y>x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.全集U={1,2,3,4,5},若A={1,2},B={1,4},則∁U(A∪B)={3,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.log225+${log_{\frac{1}{2}}}$8+log416+${log_{\sqrt{2}}}\frac{1}{5}$=-1.

查看答案和解析>>

同步練習(xí)冊答案