【題目】已知函數(shù).

(1)若函數(shù)區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù), 為自然對(duì)數(shù)的底數(shù).若存在,使不等式成立,求實(shí)數(shù)的取值范圍.

【答案】(1);(2).

【解析】試題分析:1)函數(shù)單調(diào)遞增轉(zhuǎn)化為導(dǎo)數(shù)恒為正值,分類討論求即可;(2)分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值,利用導(dǎo)數(shù)即可求出最值。

試題解析:(1)當(dāng)時(shí),函數(shù)上的單調(diào)遞增函數(shù),符合題意;

當(dāng)時(shí),由,得,

∵函數(shù)在區(qū)間內(nèi)單調(diào)遞增,

,則.

綜上所述,實(shí)數(shù)的取值范圍是.

(另由對(duì)恒成立可得,當(dāng)時(shí),符合;

當(dāng)時(shí), ,即,∴.

綜上

(2)∵存在,使不等式成立,

∴存在,使成立.

,從而,

.

由(1)知當(dāng)時(shí), 上遞增,∴.

上恒成立.

,

上單調(diào)遞增.

,∴.

實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 =1上有一點(diǎn)M(﹣4, )在拋物線y2=2px(p>0)的準(zhǔn)線l上,拋物線的焦點(diǎn)也是橢圓焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)N在拋物線上,過N作準(zhǔn)線l的垂線,垂足為Q,求|MN|+|NQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=emx+x2﹣mx.
(1)證明:f(x)在(﹣∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增;
(2)若對(duì)于任意x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的一個(gè)極值點(diǎn).

(1)若的唯一極值點(diǎn),求實(shí)數(shù)的取值范圍;

(2)討論的單調(diào)性;

(3)若存在正數(shù),使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 的定義域是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=1﹣ (x∈R),
(1)求反函數(shù)f1(x);
(2)解不等式f1(x)>log2(1+x)+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng), 恒成立,求實(shí)數(shù)的取值范圍.

(2)設(shè)上有兩個(gè)極值點(diǎn).

(A)求實(shí)數(shù)的取值范圍;

(B)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,集合A={x|ax2﹣2x+2a﹣1=0},B={y|y=log2(x+ ﹣4)},p:A=,q:B=R.
(1)若p∧q為真,求a的最大值;
(2)若p∧q為為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知具有相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:

(1)請(qǐng)根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)當(dāng)時(shí), 的值;

(3)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),從這五個(gè)點(diǎn)中隨機(jī)抽取2個(gè)點(diǎn),求這兩個(gè)點(diǎn)都在直線的右下方的概率.

(參考公式:

查看答案和解析>>

同步練習(xí)冊(cè)答案