【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為( )(結(jié)果保留一位小數(shù).參考數(shù)據(jù):,)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

【答案】C

【解析】設(shè)蒲(水生植物名)的長度組成等比數(shù)列{an},其a1=3,公比為,其前n項和為An

莞(植物名)的長度組成等比數(shù)列{bn},其b1=1,公比為2,

其前n項和為Bn.則A,Bn=,

由題意可得:,化為:2n+=7,

解得2n=6,2n=1(舍去).

∴n==1+=≈2.6.

估計2.6日蒲、莞長度相等,

故答案為:2.6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=x3+ax2+bx+1的導(dǎo)函數(shù)f′(x)滿足f′(x)=2a,f′(2)=﹣b,
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設(shè)g(x)=f′(x)ex , 求函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|1<x<2},B={x|2a﹣1<x<2a+1}.
(Ⅰ)若AB,求a的取值范圍;
(Ⅱ)若A∩B=,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|a<x<a+5}.
(1)求A∪B,(RA)∩B;
(2)若CB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,判斷條件p是條件q的什么條件:
(1)p:|x|=|y|,qxy;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四邊形的對角線互相平分,q:四邊形是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為( )(結(jié)果保留一位小數(shù).參考數(shù)據(jù):)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標(biāo)準采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).某市環(huán)保局從市區(qū)2017年上半年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉)

(1)從這15天的數(shù)據(jù)中任取一天,求這天空氣質(zhì)量達到一級的概率;

(2)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示其中空氣質(zhì)量達到一級的天數(shù),求的分布列;

(3)以這15天的PM2.5的日均值來估計一年的空氣質(zhì)量情況,(一年按360天來計算),則一年中大約有多少天的空氣質(zhì)量達到一級.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,值域是(0,+∞)的是(
A.y=( 1x
B.y=x2
C.y=5
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的傾斜角為且經(jīng)過點以原點為極點,以軸正半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為.

1)若直線與曲線有公共點,求的取值范圍;

(2)設(shè)為曲線上任意一點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案