A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
分析 由已知利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求得復(fù)數(shù)$\frac{2-i}{1+i}$的共軛復(fù)數(shù)對應(yīng)的點的坐標得答案.
解答 解:由$\frac{2-i}{1+i}$=$\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1-3i}{2}=\frac{1}{2}-\frac{3}{2}i$,
得$\overline{z}=\frac{1}{2}+\frac{3}{2}i$,
∴在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2-i}{1+i}$的共軛復(fù)數(shù)對應(yīng)的點的坐標為($\frac{1}{2},\frac{3}{2}$),位于第一象限.
故選:D.
點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | 0 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f (x)=$\sqrt{{x}^{2}}$,g(x)=x | B. | f (x)=x,g(x)=$\frac{{x}^{2}}{x}$ | ||
C. | f (x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$\sqrt{x-2}$ | D. | f (x)=x,g(x)=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>0或m<-4 | B. | -4<m<0 | C. | -4<m≤0 | D. | 0<m<4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一定是銳角三角形 | B. | 一定是直角三角形 | ||
C. | 一定是鈍角三角形 | D. | 是銳角或直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com