【題目】如圖,二面角中,,射線,分別在平面,內,點A在平面內的射影恰好是點B,設二面角與平面所成角、與平面所成角的大小分別為,則( )

A.B.C.D.

【答案】A

【解析】

由題意畫出圖形,分別找出二面角及線面角,結合正切函數(shù)的單調性及平面的斜線與平面內所有直線所成角中的最小角是線面角進行大小比較.

解:當PAl,PBl時,δ=φθ

PA,PBl均不垂直時,如圖:

由已知ABβ,可得ABl,過AAOl,連接OB,則OBl,

可得∠AOB為δ,∠APBφ,

在平面AOB內,過BBIAO,則BIα,連接PI,則∠BPIθ,

RtABORtABP中,可得tanδ,tanφ,由ABAB,PBOB,

可得tanδ>tanφ,則δ>φ

PB為平面α的一條斜線,PBα內所有直線所成角的最小角為θ,即φθ

∴δ>φθ

綜上,δ≥φθ

故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)xR,實數(shù)a[0,+∞),e=2.71828…是自然對數(shù)的底數(shù),).

(Ⅰ)若fx)≥0在xR上恒成立,求實數(shù)a的取值范圍;

(Ⅱ)若ex≥lnx+m對任意x0恒成立,求證:實數(shù)m的最大值大于2.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,平面四邊形中,為直角,為等邊三角形,現(xiàn)把沿著折起,使得平面與平面垂直,且點M的中點.

1)求證:平面平面;

2)若,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:冪勢既同,則積不容異.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為(

A.πB.πC.4D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸,建立極坐標系.

1)設射線l的極坐標方程為,若射線l與曲線C交于A,B兩點,求AB的長;

2)設M,N是曲線C上的兩點,若∠MON,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以坐標原點為極點、以軸正半軸為極軸的極坐標系中,曲線的極坐標方程為,若直線與曲線交于兩點.

1)求線段的中點的直角坐標;

2)設點是曲線上任意一點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1ab0)的離心率為,點Ma,0),N0,b),O00),且△OMN的面積為1

1)求橢圓C的標準方程;

2)設ABx軸上不同的兩點,點A(異于坐標原點)在橢圓C內,點B在橢圓C外.若過點B作斜率不為0的直線與C相交于P,Q兩點,且滿足∠PAB+QAB180°.證明:點A,B的橫坐標之積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020項的實數(shù)數(shù)列,中的每一項都不為零,中任意連續(xù)11的乘積是定值.

①存在滿足條件的數(shù)列,使得其中恰有3651;

②不存在滿足條件的數(shù)列,使得其中恰有5501.

命題的真假情況為(

A.①和②都是真命題B.①是真命題,②是假命題

C.②是真命題,①是假命題D.①和②都是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,棱的中點為,若光線從點出發(fā),依次經(jīng)三個側面,,反射后,落到側面(不包括邊界),則入射光線與側面所成角的正切值的范圍是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案