分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)求得最大值,可得2a+3b=1,然后結(jié)合基本不等式求得$\frac{1}{2a}+\frac{1}{3b}$的最小值.
解答 解:由約束條件$\left\{\begin{array}{l}2x-y-1≤0\\ x-y+1≥0\\ x≥0,y≥0\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-1=0}\end{array}\right.$,解得B(2,3),
化目標(biāo)函數(shù)z=ax+by為$y=-\frac{a}x+\frac{z}$,
由圖可知,當(dāng)直線$y=-\frac{a}x+\frac{z}$過(guò)B時(shí),直線在y軸上的截距最大,等于2a+3b=1,
∴$\frac{1}{2a}+\frac{1}{3b}$=($\frac{1}{2a}+\frac{1}{3b}$)(2a+3b)=2+$\frac{3b}{2a}+\frac{2a}{3b}$$≥2+2\sqrt{\frac{3b}{2a}•\frac{2a}{3b}}=4$.
當(dāng)且僅當(dāng)2a=3b,即$a=\frac{1}{4},b=\frac{1}{6}$時(shí)上式等號(hào)成立.
故答案為:4.
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用基本不等式求最值,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1≤x$<\frac{1}{3}$} | B. | {x|-$\frac{1}{3}<x<2$} | C. | {x|-1$≤x≤\frac{1}{3}$} | D. | {x|-$\frac{1}{3}≤x≤2$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com