【題目】如圖所示,已知橢圓 過點(diǎn),離心率為,左、右焦點(diǎn)分別為,點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、、,為坐標(biāo)原點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線、的斜線分別為、.

i)證明:;

ii)問直線上是否存在點(diǎn),使得直線、、的斜率、滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.

【答案】1 ;(2)(i)見解析;(ii

【解析】

(1)利用橢圓過已知點(diǎn)和離心率,聯(lián)立方程求得a和b,則橢圓的方程可得;

(2)(i)把直線PF1、PF2的方程聯(lián)立求得交點(diǎn)的坐標(biāo),代入直線x+y=2上,整理得

(ii)設(shè)出A,B,C,D的坐標(biāo),聯(lián)立直線PF1和橢圓的方程根據(jù)韋達(dá)定理表示出xA+xB和xAxB,進(jìn)而可求得直線OA,OB斜率的和與CO,OD斜率的和,由kOA+kOB+kOC+kOD=0推斷出k1+k2=0或k1k2=1,分別討論求得p.

(1)∵橢圓過點(diǎn),,∴,故所求橢圓方程為;

(2)(i)由于F1(﹣1,0)、F2(1,0),PF1,PF2的斜率分別是k1,k2,且點(diǎn)P不在x軸上,

所以k1≠k2,k1≠0,k2≠0.又直線PF1、PF2的方程分別為y=k1(x+1),y=k2(x﹣1),

聯(lián)立方程解得,所以,由于點(diǎn)P在直線x+y=2上,

所以,故

(ii)設(shè)A(xA,yA),B(xB,yB),C(xC,yC),D(xD,yD),聯(lián)立直線PF1和橢圓的方程得,化簡(jiǎn)得(2k12+1)x2+4k12x+2k12﹣2=0,

因此,所以,

同理可得:,故由kOA+kOB+kOC+kOD=0得k1+k2=0或k1k2=1,

當(dāng)k1+k2=0時(shí),由(1)的結(jié)論可得k2=﹣2,解得P點(diǎn)的坐標(biāo)為(0,2)

當(dāng)k1k2=1時(shí),由(1)的結(jié)論可得k2=3或k2=﹣1(舍去),

此時(shí)直線CD的方程為y=3(x﹣1)與x+y=2聯(lián)立得x=,,所以,

綜上所述,滿足條件的點(diǎn)P的坐標(biāo)分別為,P(0,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),曲線在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)的值,并求的單調(diào)區(qū)間;

(2)試比較的大小,并說明理由;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,離心率是,直線過點(diǎn)交橢圓于 兩點(diǎn),當(dāng)直線過點(diǎn)時(shí), 的周長(zhǎng)為.

求橢圓的標(biāo)準(zhǔn)方程;

當(dāng)直線繞點(diǎn)運(yùn)動(dòng)時(shí),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一元線性同余方程組問題最早可見于中國(guó)南北朝時(shí)期(公元世紀(jì))的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個(gè)整數(shù)除以三余二,除以五余三,求這個(gè)整數(shù).設(shè)這個(gè)整數(shù)為,當(dāng)時(shí), 符合條件的共有_____個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動(dòng),是線段軸的交點(diǎn),、分別作直線、,使,,.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)已知⊙,過拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),拋物線的焦點(diǎn)為,射線與拋物線相交于點(diǎn),與其準(zhǔn)線相交于點(diǎn),則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最小值

(Ⅲ)若, 求使方程有唯一解的的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)。,,中的數(shù)所成的數(shù)列,它包含的不以1結(jié)尾的任何排列,即對(duì)于的四個(gè)數(shù)的任意一個(gè)不以1結(jié)尾的排列,,都有,,,使得,并且,求這種數(shù)列的項(xiàng)數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①函數(shù)的單調(diào)增區(qū)間是

②若函數(shù)定義域?yàn)?/span>且滿足,則它的圖象關(guān)于軸對(duì)稱;

③函數(shù)的值域?yàn)?/span>;

④函數(shù)的圖象和直線的公共點(diǎn)個(gè)數(shù)是,則的值可能是;

⑤若函數(shù)上有零點(diǎn),則實(shí)數(shù)的取值范圍是.

其中正確的序號(hào)是_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案