是實數(shù),
(1)試確定的值,使成立;
(2)求證:不論為何實數(shù),均為增函數(shù)

(1)1;(2)證明見試題解析

解析試題分析:(1)成立,可以直接代入的表達式,解出,即可,也可以由成立,得為奇函數(shù),從而,由此也可很快求出 (2)要根據(jù)增函數(shù)的定義證明,設,由此證明出,為了此目的,作差,證明 
試題解析:(1)由題知,則有
,故的值為1      8分
另解:由成立,得為奇函數(shù),從而,即
(2)證明:由題意知,在上任取兩個值,則

,且為R上的增函數(shù)得,,
,即,故不論為何實數(shù),均為增函數(shù)     16分
考點:(1)函數(shù)的解析式或奇函數(shù)的定義;(2)增函數(shù)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量(單位:微克)與時間(單位:小時)之間近似滿足如圖所示的曲線.

(Ⅰ)寫出第一次服藥后之間的函數(shù)關系式;
(Ⅱ)據(jù)進一步測定:每毫升血液中含藥量不少于微克時,治療有效.問:服藥多少小時開始有治療效果?治療效果能持續(xù)多少小時?(精確到0.1)(參考數(shù)據(jù):).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,指出的單調(diào)遞減區(qū)間和奇偶性(不需說明理由);
(2)當時,求函數(shù)的零點;
(3)若對任何不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在區(qū)間上是增函數(shù).
(1)求實數(shù)的值組成的集合;
(2)設關于的方程的兩個非零實根為、.試問:是否存在實數(shù),使得不等式對任意 恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

湖南省環(huán)保研究所對長沙市中心每天環(huán)境放射性污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時刻x的關系為,其中a是與氣象有關的參數(shù),且,若用每天的最大值作為當天的綜合放射性污染指數(shù),并記作.
(Ⅰ)令,求t的取值范圍;
(Ⅱ)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

上最大值是5,最小值是2,若,在上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)的最小值為,且關于的一元二次不等式的解集為。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設其中,求函數(shù)時的最大值;
(Ⅲ)若為實數(shù)),對任意,總存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若,判斷函數(shù)上的單調(diào)性并用定義證明;
(2)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(a,b均為正常數(shù)).
(1)求證:函數(shù)內(nèi)至少有一個零點;
(2)設函數(shù)在處有極值,
①對于一切,不等式恒成立,求的取值范圍;
②若函數(shù)f(x)在區(qū)間上是單調(diào)增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案