1.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b,b>0)的離心率為$\frac{{\sqrt{5}}}{2}$,則橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 根據(jù)雙曲線的離心率建立方程關(guān)系求出a,b的關(guān)系,然后結(jié)合橢圓離心率的定義進(jìn)行求解即可.

解答 解:在雙曲線中c2=a2+b2
∵雙曲線的離心率為$\frac{{\sqrt{5}}}{2}$,
∴$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+^{2}}{{a}^{2}}$=$\frac{5}{4}$,即4a2+4b2=5a2
即a2=4b2,則c2=a2-b2=4b2-b2=3b2,
則e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{3^{2}}{4^{2}}$=$\frac{3}{4}$,即e=$\frac{\sqrt{3}}{2}$,
故橢圓的離心率是$\frac{{\sqrt{3}}}{2}$,
故選:C.

點(diǎn)評 本題主要考查雙曲線和橢圓離心率的計算,根據(jù)條件建立方程求出a,c的關(guān)系是解決本題的關(guān)鍵.注意橢圓和雙曲線a,c關(guān)系的不同.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在四面體ABCD中,截面PQMN是正方形,求證:
(1)AC∥截面PQMN;
(2)AC⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某班學(xué)生在一次月考中數(shù)學(xué)不及格的占16%,語文不及格的占7%,兩門都不及格的占4%,已知該班某學(xué)生在月考中語文不及格,則該學(xué)生在月考中數(shù)學(xué)不及格的概率是( 。
A.$\frac{1}{4}$B.$\frac{7}{16}$C.$\frac{4}{7}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若雙曲線$\frac{x^2}{9}$-$\frac{y^2}{m}$=1的離心率為$\frac{{\sqrt{14}}}{3}$,則雙曲線焦點(diǎn)F到漸近線的距離為(  )
A.2B.$\sqrt{14}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,某居民小區(qū)內(nèi)建一塊直角三角形草坪ABC,直角邊AB=40米,AC=40$\sqrt{3}$米,扇形花壇ADE是草坪的一部分,其半徑為20米,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內(nèi)鋪設(shè)兩條小路OM和ON,考慮到小區(qū)整體規(guī)劃,要求M、N在斜邊BC上,O在弧$\widehat{DE}$上,OM∥AB,ON∥AC,.
(1)設(shè)∠OAE=θ,記f(θ)=OM+ON,求f(θ)的表達(dá)式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,兩條路每米鋪設(shè)費(fèi)用均為400元,如何設(shè)計θ的大小使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=mlnx(m∈R),g(x)=$\frac{x-1}{2x}$.
(1)當(dāng)m=1時,求y=f(x)在x=1處的切線方程;
(2)設(shè)F(x)=f(x)-2g(x),若函數(shù)F(x)在區(qū)間[1,e]上的最小值為-1,求實(shí)數(shù)m的值;
(3)當(dāng)m=$\frac{3}{16}$時,若不等式f(x)+t≤kx+b≤g(x)對?x∈[2,4]恒成立,試給出實(shí)數(shù)t的一個值,使?jié)M足條件的實(shí)數(shù)k,b唯一,并直接寫出k,b的值(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點(diǎn)P是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)右支上一點(diǎn),F(xiàn)1、F2分別為雙曲線的右、右焦點(diǎn),若I為△PF1F2的內(nèi)心,則S△IPF1-S△IPF2=$\frac{a}{{\sqrt{{a^2}+{b^2}}}}{S_{△I{F_1}{F_2}}}$成立.請類比該結(jié)論得出有關(guān)橢圓的一個結(jié)論并進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一貨輪航行到M處,測得燈塔S在貨輪的北偏東15°方向上,與燈塔S相距20nmile,隨后貨輪按北偏西30°的方向航行3h后,又測得燈塔在貨輪的東北方向,則貨輪的速度為( 。
A.$\frac{10(\sqrt{6}+\sqrt{2})}{3}$nmile/hB.$\frac{10(\sqrt{6}-\sqrt{2})}{3}$nmile/hC.$\frac{10(\sqrt{6}+\sqrt{3})}{3}$nmile/hD.$\frac{10(\sqrt{6}-\sqrt{3})}{3}$nmile/h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.空氣污染,又稱為大氣污染,是指由于人類活動或自然過程引起某些物質(zhì)進(jìn)入大氣中,呈現(xiàn)出足夠的濃度,達(dá)到足夠的時間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來越關(guān)注環(huán)境保護(hù)問題.當(dāng)空氣污染指數(shù)(單位:μg/m3)為0~50時,空氣質(zhì)量級別為一級,空氣質(zhì)量狀況屬于優(yōu);當(dāng)空氣污染指數(shù)為50~100時,空氣質(zhì)量級別為二級,空氣質(zhì)量狀況屬于良;當(dāng)空氣污染指數(shù)為100~150時,空氣質(zhì)量級別是為三級,空氣質(zhì)量狀況屬于輕度污染;當(dāng)空氣污染指數(shù)為150~200時,空氣質(zhì)量級別為四級,空氣質(zhì)量狀況屬于中度污染;當(dāng)空氣污染指數(shù)為200~300時,空氣質(zhì)量級別為五級,空氣質(zhì)量狀況屬于重度污染;當(dāng)空氣污染指數(shù)為300以上時,空氣質(zhì)量級別為六級,空氣質(zhì)量狀況屬于嚴(yán)重污染.2015年8月某日某省x個監(jiān)測點(diǎn)數(shù)據(jù)統(tǒng)計如表:
空氣污染指數(shù)(單位:μg/m3[0,50](50,100](100,150](150,200]
監(jiān)測點(diǎn)個數(shù)1540y10
(1)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(2)在空氣污染指數(shù)分別為50~100和150~200的監(jiān)測點(diǎn)中,用分層抽樣的方法抽取5個監(jiān)測點(diǎn),從中任意選取2個監(jiān)測點(diǎn),事件A“兩個都為良”發(fā)生的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案