5.在區(qū)間[-1,3]上隨機(jī)取一個數(shù)x,若x滿足|x|≤m的概率為$\frac{1}{2}$,則實(shí)數(shù)m為( 。
A.0B.1C.2D.3

分析 求解不等式|x|≤m,得到-m≤x≤m,得其區(qū)間長度,求出區(qū)間[-1,3]的長度,由兩區(qū)間長度比列式得答案.

解答 解:區(qū)間[-1,3]的區(qū)間長度為4.
不等式|x|≤m的解集為[-m,m],
區(qū)間長度為2m,
由$\frac{2m}{4}=\frac{1}{2}$,得m=1.
故選:B.

點(diǎn)評 本題考查幾何概型,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x-1,x>0}\\{{2}^{x}-x+\frac{1}{3}{a}^{3},x≤0}\end{array}\right.$,若f(f(4))=$\frac{11}{3}$,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓C和拋物線y2=x交于M,N兩點(diǎn),且直線MN恰好通過橢圓C的右焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)A為橢圓的右頂點(diǎn),經(jīng)過原點(diǎn)的直線和橢圓C交于B,D兩點(diǎn),設(shè)直線AB與AD的斜率分別為k1,k2.問k1•k2是否為定值?若為定值,請求出;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某單位280名員工參加“我愛閱讀”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
( I)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第1,2,3組的員工人數(shù)分別是多少?
( II)為了交流讀書心得,現(xiàn)從上述12人中再隨機(jī)抽取3人發(fā)言,設(shè)3人中年齡在[35,40)的人數(shù)為ξ,求ξ的數(shù)學(xué)期望;
( III)為了估計該單位員工的閱讀傾向,現(xiàn)對從該單位所有員工中按性別比例抽取的40人做“是否喜歡閱讀國學(xué)類書籍”進(jìn)行調(diào)查,調(diào)查結(jié)果如下表所示:(單位:人)
喜歡閱讀國學(xué)類 不喜歡閱讀國學(xué)類 合計
 男 14 4 18
 女 8 14 22
 合計 22 18 40
根據(jù)表中數(shù)據(jù),我們能否有99%的把握認(rèn)為該單位員工是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=cosxsin2x,以下四個結(jié)論:
①f(x)既是偶函數(shù),又是周期函數(shù);
②f(x)圖象關(guān)于直線x=π對稱;
③f(x)圖象關(guān)于$(\frac{π}{2},0)$中心對稱;
④f(x)的最大值$\frac{4}{9}\sqrt{3}$.
其中,正確的結(jié)論的序號是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知菱形ABCD的邊長為2,∠ABC=60°,點(diǎn)E滿足$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,則$\overrightarrow{AE}•\overrightarrow{AD}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)復(fù)數(shù)z滿足$\frac{z+1}{z-2}=1-3i$,則|z|=( 。
A.5B.$\sqrt{5}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖所示,某地一天6~14時的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+ϕ)+b,則這段曲線的函數(shù)解析式可以為( 。
A.$y=10sin(\frac{π}{8}x+\frac{3π}{4})+20$,x∈[6,14]B.$y=10sin(\frac{π}{8}x+\frac{5π}{4})+20$,x∈[6,14]
C.$y=10sin(\frac{π}{8}x-\frac{3π}{4})+20$,x∈[6,14]D.$y=10sin(\frac{π}{8}x+\frac{5π}{8})+20$,x∈[6,14]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(x+1)ex-$\frac{1}{2}{x^2}$-ax(a∈R,e是自然對數(shù)的底數(shù))在(0,f(0))處的切線與x軸平行.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)g(x)=(ex+2m-2)x-$\frac{1}{2}{x^2}$-n,若?x∈R,不等式f(x)≥g(x)恒成立,求m-$\frac{n}{2}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案