下列結(jié)論正確的是( 。
A、若向量
a
b
,則存在唯一的實數(shù)λ使得
a
b
B、已知向量
a
b
,為非零向量,則“
a
,
b
的夾角為鈍角”的充要條件是“
a
,
b
<0”
C、命題:若x2=1,則x=1或x=-1,故當(dāng)x≥1的逆否命題為:若x≠1且x≠-1,則x2≠1
D、若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1>0
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:根據(jù)共線向量基本定理判斷A;向量
a
,
b
為非零向量,則“
a
,
b
的夾角為鈍角”的充要條件是“
a
b
<0,且向量
a
,
b
不共線”判斷B;直接寫出原命題的逆否命題判斷C;寫出命題p:?x∈R,x2-x+1<0的否定判斷D.
解答: 解:若向量
a
b
b
0
,則存在唯一的實數(shù)λ使
a
b
,故A不正確;
已知向量
a
b
為非零向量,則“
a
b
的夾角為鈍角”的充要條件是“
a
b
<0,且向量
a
b
不共線”,
故B不正確;
命題:若x2=1,則x=1或x=-1的逆否命題是把結(jié)論否定作為條件,條件否定作為結(jié)論,
∴原命題的逆否命題為:若x≠1且x≠-1,則x2≠1,故C正確;
若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1≥0,故D不正確.
故選:C.
點評:本題考查了命題的真假判斷與應(yīng)用,考查了充分必要條件的判斷方法,考查了共線向量基本定理,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等差數(shù)列{an}滿足a1=2,且a1,a2,a4成等比數(shù)列,其前n項和為Sn
(Ⅰ)求數(shù)列{an}的通項公式及Sn;
(Ⅱ)設(shè)bn=
Sn
n
,求數(shù)列{
1
bnbn+1
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
cos2α
cosα[1+tan(-α)]
=
2
3
,則sin2α+cos(α-
π
4
)等于( 。
A、-
4
9
B、
4
9
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品原來的年產(chǎn)量為1萬噸,計劃從今年開始,年產(chǎn)量平均增長10%.
(1)若經(jīng)過x年,年產(chǎn)量為y萬噸,試寫出y與x的函數(shù)關(guān)系,并寫出定義域;
(2)問經(jīng)過幾年,年產(chǎn)量可以達(dá)2.36萬噸?(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x-1)=3x+a,且f(3)=2,則a等于(  )
A、-3B、1C、-4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a+2,a+1,a2+3a+3},且1∈A,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+msin2x,若角α的終邊與單位圓(圓心為坐標(biāo)原點)交于點P(
3
2
,-
1
2
),
且f(α)=-2.
(Ⅰ)求實數(shù)m的值;
(Ⅱ)求f(x)的最小正周期和x∈[-
π
4
π
4
]時的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐的頂點都在同一球面上,若該棱錐的側(cè)棱長為2
3
,底面邊長為4,則該球的表面積是( 。
A、36πB、32π
C、18πD、16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“y=2”是“y2=4”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案