【題目】已知兩個(gè)命題p:sinx+cosx>m,q:x2+mx+1>0.如果對(duì)任意x∈R,p與q有且僅有一個(gè)是真命題.求實(shí)數(shù)m的取值范圍.
【答案】【解答】
解:∵
∴當(dāng)p是真命題時(shí),m<
又∵對(duì)任意x∈R,q為真命題,
即x2+mx+1>0恒成立,
有Δ=m2-4<0,∴-2<m<2.
∴當(dāng)p為真,q為假時(shí),m< ,且m≤-2或m≥2,
即m≤-2,
當(dāng)p為假,q為真時(shí),m≥ 且-2<m<2,即 ≤m<2,
綜上,實(shí)數(shù)m的取值范圍是m≤-2或 ≤m<2.
【解析】因?yàn)閜與q有且僅有一個(gè)是真命題,所以p、q一真一假;判斷命題的真假,直接利用相關(guān)定義、定理、公理判斷即可。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解全稱命題(全稱命題:,,它的否定:,;全稱命題的否定是特稱命題).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ln(2﹣x)[x﹣(3m+1)]的定義域?yàn)榧螦,集合B={x| <0}
(1)當(dāng)m=3時(shí),求A∩B;
(2)求使BA的實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-5:不等式選講】
已知函數(shù)f(x)=|x+1|+|x-3|.
(1)若關(guān)于x的不等式f(x)<a有解,求實(shí)數(shù)a的取值范圍:
(2)若關(guān)于x的不等式f(x)<a的解集為(b, ),求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,橢圓 ()的離心率,短軸的兩個(gè)端點(diǎn)分別為B1、B2,焦點(diǎn)為F1、F2,四邊形F1 B1F2 B2的內(nèi)切圓半徑為
(1)求橢圓C的方程;
(2)過左焦點(diǎn)F1的直線交橢圓于M、N兩點(diǎn),交直線于點(diǎn)P,設(shè),,試證為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假;寫出這些命題的否定并判斷真假.
(1)三角形的內(nèi)角和為180°;
(2)每個(gè)二次函數(shù)的圖象都開口向下;
(3)存在一個(gè)四邊形不是平行四邊形;
(4);
(5).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線x+y+m=0與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn), ,則實(shí)數(shù)m的取值范圍是( )
A.[﹣2,2]
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集為實(shí)數(shù)集R,函數(shù)f(x)=lg(2x﹣1)的定義域?yàn)锳,集合B={x||x|﹣a≤0}(a∈R)
(1)若a=2,求A∪B和A∩B
(2)若RA∪B=RA,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.已知購買一張彩票中獎(jiǎng)的概率為 ,則購買1000張這種彩票一定能中獎(jiǎng)
B.互斥事件一定是對(duì)立事件
C.如圖,直線l是變量x和y的線性回歸方程,則變量x和y相關(guān)系數(shù)在﹣1到0之間
D.若樣本x1 , x2 , …xn的方差是4,則x1﹣1,x2﹣1,…xn﹣1的方差是3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com