【題目】已知直線x+y+m=0與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn), ,則實(shí)數(shù)m的取值范圍是(
A.[﹣2,2]
B.
C.
D.

【答案】B
【解析】解:∵直線x+y+m=0與圓x2+y2=4交于不同的兩點(diǎn)A,B,
故AB為圓的一條弦,且圓心O(0,0),半徑r=2,
設(shè)線段AB的中點(diǎn)為C,根據(jù)向量加法的平行四邊形法則,可得
,即為2| |≥| |,即| |≥ | |=AC,
根據(jù)圓中弦的性質(zhì),則△OAC為直角三角形,
∴在Rt△OAC中,OA=r=2,OC≥AC,
≤OC<2,
∵OC為點(diǎn)O到直線x+y+m=0的距離,
故OC= = ,
<2,即 ,解得m∈(﹣2 ,﹣2]∪[2,2 ),
∴實(shí)數(shù)m的取值范圍是(﹣2 ,﹣2]∪[2,2 ).
故選:B.
設(shè)AB線段的中點(diǎn)為C,可得2| |≥| |,可得 ≤OC<2,利用圓心到直線的距離公式列出關(guān)于m的不等關(guān)系,求解即可得到實(shí)數(shù)m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)當(dāng) 時,討論 f(x)的單調(diào)性;
(2)若 時, ,求 a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 為偶函數(shù),方程f(x)=m有四個不同的實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是(
A.(﹣3,﹣1)
B.(﹣2,﹣1)
C.(﹣1,0)
D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假;
(1)
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個命題p:sinx+cosx>m,q:x2+mx+1>0.如果對任意x∈R,p與q有且僅有一個是真命題.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣6x﹣4y+4=0,點(diǎn)P(6,0).
(1)求過點(diǎn)P且與圓C相切的直線方程l;
(2)若圓M與圓C外切,且與x軸切于點(diǎn)P,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)若函數(shù)上無零點(diǎn),求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)上具有單調(diào)性,求實(shí)數(shù)的取值范圍;

(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在圖象上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案