2.不等式-x2+3x-5≥0的解集是(  )
A.RB.C.R+D.R-

分析 根據(jù)題意,將-x2+3x-5≥0變形為x2-3x+5≤0,由一元二次不等式的解法計(jì)算可得答案.

解答 解:根據(jù)題意,-x2+3x-5≥0⇒x2-3x+5≤0,
其中△=(-3)2-4×5=-11<0,
則不等式-x2+3x-5≥0的解集是∅;
故選:B.

點(diǎn)評(píng) 本題考查一元二次不等式的解法,關(guān)鍵是掌握一元二次不等式與一元二次函數(shù)的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為了培養(yǎng)學(xué)生的數(shù)學(xué)建模和應(yīng)用能力,某校組織了一次實(shí)地測(cè)量活動(dòng),如圖,假設(shè)待測(cè)量的樹木AE的高度H(m),垂直放置的標(biāo)桿BC的高度h=4m,仰角∠ABE=α,∠ADE=β(D,C,E三點(diǎn)共線),試根據(jù)上述測(cè)量方案,回答如下問題:
(1)若測(cè)得α=60°、β=30°,試求H的值;
(2)經(jīng)過分析若干次測(cè)得的數(shù)據(jù)后,大家一致認(rèn)為適當(dāng)調(diào)整標(biāo)桿到樹木的距離d(單位:m),使α與β之差較大時(shí),可以提高測(cè)量精確度.
若樹木的實(shí)際高度為8m,試問d為多少時(shí),α-β最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且過點(diǎn)($\frac{1}{2},-\frac{\sqrt{14}}{4}$),點(diǎn)A(x0,y0)為橢圓C上的點(diǎn),且以A為圓心的圓過橢圓C的右焦點(diǎn)F.
(Ⅰ)求橢圓C的方程;
(Ⅱ)記M(0,y1)、N(0,y2)是圓A上的兩點(diǎn),若|FM|•|FN|>p恒成立,求實(shí)數(shù)p的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在區(qū)間[0,4]內(nèi)隨機(jī)選一個(gè)實(shí)數(shù)x,該實(shí)數(shù)恰好在區(qū)間[1,3]內(nèi)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓O以AB為直徑,半徑為1.若圓O上有長(zhǎng)度為1的動(dòng)弦CD,則$\overrightarrow{AC}•\overrightarrow{BD}$的取值范圍是[-$\frac{3}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知圓x2+y2-2x-4y+3=0關(guān)于直線ax+by-2=0(a>0,b>0)對(duì)稱,則$\frac{1}{a}$+$\frac{2}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在三棱錐P-ABC中,PA⊥平面ABC,平面PAC⊥平面PBC,則直角△ABC中的三個(gè)角A,B,C中,角為直角C(從A,B,C中選擇一個(gè)填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某單位有職工480人,其中青年職工210人,中年職工150人,老年職工120人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為( 。
A.4B.5C.7D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.我艦在敵島A南偏西50°距離A島12海里的B處,發(fā)現(xiàn)敵艦正由A島沿北偏西10°的方向以10海里/小時(shí)的速度航行,若我艦要用2小時(shí)追上敵艦,則我艦的速度大小為14.

查看答案和解析>>

同步練習(xí)冊(cè)答案