【題目】如圖所示,已知圓的圓心在直線上,且該圓存在兩點(diǎn)關(guān)于直線對稱,又圓與直線相切,過點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn),是的中點(diǎn),直線與相交于點(diǎn).
(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請說明理由.
【答案】(1);(2)或;(3)是,.
【解析】
試題分析:(1)借助題設(shè)條件構(gòu)建方程組求解;(2)借助題設(shè)建立方程組求解;(3)運(yùn)用向量的坐標(biāo)形式的運(yùn)算推證求解.
試題解析:
(1)由圓存在兩點(diǎn)關(guān)于直線對稱知圓心在直線上,
由得.
設(shè)圓的半徑為,因?yàn)閳A與直線相切,
所以.
所以圓的方程為.
(2)當(dāng)直線與軸垂直時(shí),易知符合題意..
當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為,
即連接,則,
∵,∴,
由,得
∴直線的方程為.
∴所求直線的方程為或.
(3)∵,∴,
∴,
當(dāng)直線與軸垂直時(shí),得,則,又,
∴
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,
由,解得,∴,
∴
綜上所述,是定值,且為-10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)當(dāng)時(shí),試比較與的大小關(guān)系;
(2)猜想與的大小關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,其上下頂點(diǎn)分別為,點(diǎn).
(1)求橢圓的方程以及離心率;
(2)點(diǎn)的坐標(biāo)為,過點(diǎn)的任意作直線與橢圓相交于兩點(diǎn),設(shè)直線的斜率依次成等差數(shù)列,探究之間是否存在某種數(shù)量關(guān)系,若是請給出的關(guān)系式,并證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為矩形,直線平面,,,,點(diǎn)在棱上.
(1)求證:;
(2)若是的中點(diǎn),求異面直線與所成角的余弦值;
(3)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系的點(diǎn)為極點(diǎn),方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為.
(1)求直線的傾斜角和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),設(shè)點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率,左、右焦點(diǎn)分別為, ,點(diǎn)滿足: 在線段的中垂線上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若斜率為()的直線與軸、橢圓順次相交于點(diǎn)、、,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列為等比數(shù)列,等差數(shù)列的前項(xiàng)和為,且滿足:
.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè),求;
(3)設(shè),問是否存在正整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若,求的前項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com