20.已知向量|$\overrightarrow a}$|=4,$\overrightarrow e$為單位向量,當(dāng)他們之間的夾角為$\frac{π}{3}$時,$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影與$\overrightarrow{e}$在$\overrightarrow{a}$方向上的投影分別為( 。
A.2$\sqrt{3}$,$\frac{\sqrt{3}}{2}$B.2,$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$,2$\sqrt{3}$D.2,2

分析 根據(jù)平面向量投影的定義,即可求出向量$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影和$\overrightarrow{e}$在$\overrightarrow{a}$方向上的投影.

解答 解:向量|$\overrightarrow a}$|=4,$\overrightarrow e$為單位向量,且夾角為$\frac{π}{3}$;
則$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影是|$\overrightarrow{a}$|cos$\frac{π}{3}$=4×$\frac{1}{2}$=2
$\overrightarrow{e}$在$\overrightarrow{a}$方向上的投影|$\overrightarrow{e}$|cos$\frac{π}{3}$=1×$\frac{1}{2}$=$\frac{1}{2}$.
故選:B.

點評 本題考查了平面向量投影的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.將曲線C1:x2+y2=1上所有點的橫坐標(biāo)伸長到原來的$\sqrt{2}$倍(縱坐標(biāo)不變)得到曲線C2,A為C1與x軸正半軸的交點,直線l經(jīng)過點A且傾斜角為30°,記l與曲線C1的另一交點為B,與曲線C2在一、三象限的交點分別為C,D.
(1)寫出曲線C2的普通方程及直線l的參數(shù)方程;
(2)求|AC|-|BD|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{2a}{e}$x-lnx(a∈R,e為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)f(x)的極值點;
(Ⅱ)當(dāng)a=1時,求證:f(x)-$\frac{{x}^{2}}{{e}^{x}}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知A、B是單位圓(O為圓心)上的兩個定點,且∠AOB=30°,若C為該圓上的動點,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),則xy的最大值為2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某單位有員工90人,其中女員工有36人.為做某項調(diào)查,擬采用分層抽樣抽取容量為15的樣本,則男員工應(yīng)選取的人數(shù)是( 。
A.6人B.9人C.10人D.7人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若f(x)=$\frac{x}{{{{log}_{\frac{1}{2}}}(2x-1)}}$,則f(x)的定義域為( 。
A.$(\frac{1}{2},1)$B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)∪(1,+∞)$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某區(qū)實驗幼兒園對兒童記憶能力x與識圖能力y進行統(tǒng)計分析,得到如下數(shù)據(jù):
記憶能力x46810
識圖能力y3568
由表中數(shù)據(jù),求得線性回歸方程為y=$\frac{4}{5}$x+a,則a=(  )
A.0.1B.-0.1C.0.2D.-0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題“?x∈R,x2+6ax+1<0”為假命題,則a的取值范圍是$[{-\frac{1}{3},\frac{1}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.用更相減損術(shù),求下列兩數(shù)的最大公約數(shù):
(1)225,135;                      
(2)98,280.

查看答案和解析>>

同步練習(xí)冊答案