8.若方程|x2-4|x|-5|=m有6個互不相等的實(shí)根,則m的取值范圍為(5,9).

分析 由題意可得,函數(shù)y=|x2-4|x|-5|的圖象和直線y=m有6個交點(diǎn),數(shù)形結(jié)合可得,5<m<9,即為m的范圍.

解答 解:由于方程|x2-4|x|-5|=m有6個互不相等的實(shí)數(shù)根,
則函數(shù)y=|x2-4|x|-5|的圖象和直線y=m有6個交點(diǎn),
y=|x2-4|x|-5|=$\left\{\begin{array}{l}{{x}^{2}+4x-5,x≤-5}\\{-{x}^{2}-4x+5,-5<x<0}\\{-{x}^{2}+4x+5,0<x<5}\\{{x}^{2}-4x-5,x≥5}\end{array}\right.$,
作出y=|x2-4|x|-5|的圖象,數(shù)形結(jié)合可得,5<m<9,
故答案為:(5,9).

點(diǎn)評 本題主要考查方程的根的存在性及個數(shù)判斷,體現(xiàn)了化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且Sn滿足Sn2-(n2+n-2)Sn-2(n2+n)=0,n∈N*
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有$\frac{{{a_1}+1}}{a_1}$×$\frac{{{a_2}+1}}{a_2}$×…×$\frac{{{a_n}+1}}{a_n}$>$\sqrt{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.等差數(shù)列{an}前9項的和等于前4項的和.若a4+ak=0,則k=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.P(3cosθ,sinθ)是銳角α終邊上一點(diǎn),其中0<θ<$\frac{π}{2}$.記y=θ-α,則 y的最大值是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2+ax,若f(f(0))=4a.
(1)求實(shí)數(shù)a的值;
(2)計算f(3)-f(-1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.現(xiàn)有三個實(shí)數(shù)的集合,既可表示為{a,$\frac{a}$,1},也可表示為{a2,a+b,0},則a2016+b2016=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x4lnx-a(x4-1),a∈R.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若當(dāng)x≥1時,f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(3)f(x)的極小值為φ(a),當(dāng)a>0時,求證:$\frac{1}{4}({{e^{1-\frac{1}{4a}}}-{e^{4a-1}}})≤φ(a)<0$.(e=2.71828…為自然對數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在體積為$\frac{{\sqrt{3}}}{2}$的四面體ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,則CD長度的所有值為$\sqrt{7},\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知四棱錐P-ABCD的底面為正方形,且PA=PB=PC=PD=$\sqrt{3}$.若其外接球半徑為2,則四棱錐P-ABCD的高為$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案