3.在體積為$\frac{{\sqrt{3}}}{2}$的四面體ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,則CD長度的所有值為$\sqrt{7},\sqrt{19}$.

分析 由已知求得△BCD的面積,再由面積公式求得sinB,進一步求得cosB,再由余弦定理求得CD長度.

解答 解:如圖,

在四面體ABCD中,∵AB⊥平面BCD,∴AB為以BCD為底面的三棱錐的高,
∵${V}_{A-BCD}=\frac{\sqrt{3}}{2}$,AB=1,∴由$\frac{1}{3}{S}_{△BCD}•AB=\frac{\sqrt{3}}{2}$,得${S}_{△BCD}=\frac{3\sqrt{3}}{2}$.
又BC=2,BD=3,得$\frac{1}{2}×2×3×sinB=\frac{3\sqrt{3}}{2}$,得sinB=$\frac{\sqrt{3}}{2}$,∴cosB=$±\frac{1}{2}$.
當cosB=$\frac{1}{2}$時,CD2=22+32-2×2×3×$\frac{1}{2}$=7,則CD=$\sqrt{7}$;
當cosB=-$\frac{1}{2}$時,CD2=22+32-2×2×3×($-\frac{1}{2}$)=19,則CD=$\sqrt{19}$.
∴CD長度的所有值為$\sqrt{7}$,$\sqrt{19}$.
故答案為:$\sqrt{7}$,$\sqrt{19}$.

點評 本題考查棱錐的結(jié)構(gòu)特征,考查了棱錐的體積公式,訓練了余弦定理的應用,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線分別為l1,l2,直線l:y=-x+c過雙曲線C的右焦點F(c,0),且分別與直線l1,l2交于A,B兩點,若$\overrightarrow{FA}$=$\overrightarrow{AB}$,則雙曲線C的離心率為(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.4D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若方程|x2-4|x|-5|=m有6個互不相等的實根,則m的取值范圍為(5,9).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,已知:點E、F分別是正方形ABCD的邊AB、BC的中點,BD、DF分別交CE于點G、H,若正方形ABCD的面積是240,則四邊形BFHG的面積等于( 。
A.26B.28C.24D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某統(tǒng)計部門隨機抽查了3月1日這一天新世紀百貨童裝部100名顧客的購買情況,得到如圖數(shù)據(jù)統(tǒng)計表,已知購買金額在2000元以上(不含2000元)的頻率為0.4.
購買金額頻數(shù)頻率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合計1001.00
(1)確定x,y,p,q的值;
(2)為進一步了解童裝部的購買情況是否與顧客性別有關(guān),對這100名顧客調(diào)查顯示:購物金額在2000元以上的顧客中女顧客有35人,購物金額在2000元以下(含2000元)的顧客中男顧客有20人;
①請將列聯(lián)表補充完整:
女顧客男顧客合計
購物金額在2000元以上35
購物金額在2000元以下20
合計100
②并據(jù)此列聯(lián)表,判斷是否有97.5%的把握認為童裝部的購買情況與顧客性別有關(guān)?
參考數(shù)據(jù):
P(K2≥k)0.010.050.0250.01
k2.7063.8415.0246.635
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=|x-1|+|x-2|+…+|x-n|(n∈N*),f(x)的最小值記為an,其中a1=0,a2=1,則an=n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某班有25名男生、15名女生共40人,現(xiàn)對他們更愛好文娛還是更愛好體育進行調(diào)查,根據(jù)調(diào)查得到的數(shù)據(jù),所繪制的二維條形圖如圖.
(1)根據(jù)圖中數(shù)據(jù),制作2×2列聯(lián)表,并判斷能否在犯錯概率不超過0.10的前提下認為性別與是否更愛好體育有關(guān)系?
(2)若要從更愛好體育的學生中各隨機選2人,求所選2人中女生人數(shù)X的期望;
(3)若要從更愛好文娛和更愛好體育的學生中各選一人分別做文體活動協(xié)調(diào)人,求選出的兩人恰好是一男一女的概率;
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 更愛好體育更愛好文娛 合計
 男生   
 女生   
 合計  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,已知圓O的一條直徑為AB,PE是圓O的一條切線,E為切點,PC是圓O的一條割線,且交圓O于C,D兩點,AB交PC于F,BE交PC于G,△AFC∽△ACB.
(1)求證:∠PEG=∠PGE;
(2)若PG=5,PD=3,求DC的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知定義在R上的函數(shù)f(x)滿足f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,則f(x)的表達式為f(x)=x2-2.

查看答案和解析>>

同步練習冊答案