17.在極坐標(biāo)系中,極點到直線ρcosθ=1的距離為1.

分析 先求出直線的直角坐標(biāo)方程,求出極點的直角坐標(biāo),即可求得極點到直線ρcosθ=1的距離.

解答 解:直線ρcosθ=1,即x=1,極點的直角坐標(biāo)為(0,0),故極點到直線ρcosθ=1的距離為1,
故答案為1.

點評 本題主要考查把點的極坐標(biāo)化為直角坐標(biāo),點到直線的距離的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知點A(0,2),拋物線C:y2=mx(m>0)的焦點為F,射線FA與拋物線C相交于點M,與其準(zhǔn)線相交于點N,若|FM|:|MN|=1:2,則△OFN的面積為( 。
A.$8\sqrt{3}$B.$4\sqrt{3}$C.$\frac{8\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某中學(xué)舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)作為樣本進(jìn)行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100)的數(shù)據(jù))

(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取2名同學(xué)到市政廣場參加環(huán)保宣傳的志愿者活動,求所抽取的2名同學(xué)來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,曲線C1的方程為$\frac{x^2}{9}+{y^2}=1$.以坐標(biāo)原點為極點,以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2-8ρsinθ+15=0.
(Ⅰ)寫出C1的參數(shù)方程和C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)點P在C1上,點Q在C2上,求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某中學(xué)高一、高二年級各有8個班,學(xué)校調(diào)查了春學(xué)期各班的文學(xué)名著閱讀量(單位:本),并根據(jù)調(diào)查結(jié)果,得到如下所示的莖葉圖:

為鼓勵學(xué)生閱讀,在高一、高二兩個兩個年級中,學(xué)校將閱讀量高于本年級閱讀量平均數(shù)的班級命名為該年級的“書香班級”.
(1)當(dāng)a=4時,記高一年級“書香班級”數(shù)為m,高二年級的“書香班級”數(shù)為n,比較m,n的大小關(guān)系;
(2)在高一年級8個班級中,任意選取兩個,求這兩個班級均是“書香班級”的概率;
(3)若高二年級的“書香班級”數(shù)多于高一年級的“書香班級”數(shù),求a的值(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,既是偶函數(shù)又是(0,+∞)上的增函數(shù)的是( 。
A.y=-x3B.y=2|x|C.y=${x}^{\frac{1}{2}}$D.y=log3(-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示的幾何體中,四邊形ABCD為等腰梯形,AB∥CD,AB=2AD=2,∠DAB=60°,四邊形CDEF為正方形,平面CDEF⊥平面ABCD.
(Ⅰ)若點G是棱AB的中點,求證:EG∥平面BDF;
(Ⅱ)求直線AE與平面BDF所成角的正弦值;
(Ⅲ)在線段FC上是否存在點H,使平面BDF⊥平面HAD?若存在,求$\frac{FH}{HC}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z的對應(yīng)點為(1,2),復(fù)數(shù)z的共軛復(fù)數(shù)為(  )
A.1+2iB.1-2iC.-2+iD.-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z滿足(3-i)z=2+i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)是(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}i$C.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

同步練習(xí)冊答案