6.下列四組函數(shù),兩個函數(shù)相同的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=xB.f(x)=log33x,g(x)=$\root{3}{{x}^{3}}$
C.f(x)=($\sqrt{x}$)2,g(x)=|x|D.f(x)=x,g(x)=x0

分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,判斷它們是同一函數(shù)即可.

解答 解:對于A:f(x)=$\sqrt{{x}^{2}}$=|x|的定義域為R,g(x)=x的定義域為R,它們定義域相同,對應(yīng)關(guān)系不相同,∴不是同一函數(shù);
對于B:f(x)=log33x=x與g(x)=$\root{3}{{x}^{3}}$=x它們的定義域相同,對應(yīng)關(guān)系也相同,∴是同一函數(shù);
對于C:f(x)=($\sqrt{x}$)2的定義域為{x|x≥0},而g(x)=|x|的定義域為R,它們定義域不相同,∴不是同一函數(shù);
對于D:f(x)=x的定義域為R,而g(x)=x0的定義域為{x|x≠0}.它們定義域不相同,∴不是同一函數(shù);
故選B.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)f(x)中,滿足“任意x1,x2∈(0,+∞),且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0”的是(  )
A.f(x)=$\frac{1}{x}$-xB.f(x)=x3C.f(x)=ln xD.f(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.由數(shù)字0、1、2、3、4、5組成沒有重復(fù)數(shù)字的三位數(shù),其中被5整除的數(shù)有(  )
A.16B.20C.30D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某車間20名工人年齡數(shù)據(jù)如表:
年齡(歲)工人數(shù)(人)
191
283
293
305
314
323
401
合計20
(1)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(2)求這20名工人年齡的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知菱形ABCD的邊長為4,∠DAB=60°,$\overrightarrow{EC}$=3$\overrightarrow{DE}$,則 $\overrightarrow{AE}•\overrightarrow{BE}$的值為(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知冪函數(shù)f(x)=k•xa的圖象過點($\frac{1}{2}$,$\frac{1}{4}$)則k+a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合A={x|1<x≤5},集合B={$\frac{2x-1}{x-3}$>0}.
(1)求A∩B;
(2)若集合C={x|a+1≤x≤4a-3},且C∪A=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下面各組函數(shù)中為相同函數(shù)的是②.(填上正確的序號)
①f(x)=$\sqrt{{{(x-1)}^2}}$,g(x)=x-1
②f(x)=x-1,g(t)=t-1
③f(x)=$\sqrt{{x^2}-1}$,g(x)=$\sqrt{x+1}•\sqrt{x-1}$
④f(x)=x,g(x)=$\frac{x^2}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.與角-$\frac{5π}{8}$終邊相同的角是( 。
A.$\frac{3π}{8}$B.$\frac{7π}{8}$C.$\frac{11π}{8}$D.$\frac{21π}{8}$

查看答案和解析>>

同步練習(xí)冊答案