12.表面積為3π的圓錐,它的側(cè)面展開圖是一個半圓,則該圓錐的底面半徑為(  )
A.$\frac{{2\sqrt{15}}}{5}$B.$\frac{{\sqrt{15}}}{5}$C.2D.1

分析 設(shè)圓錐的底面的半徑為r,圓錐的母線為l,則由πl(wèi)=2πr得l=2r,再根據(jù)表面積S=πr2+πr•2r=3π,求得r的值,即為所求.

解答 解:設(shè)圓錐的底面的半徑為r,圓錐的母線為l,則由πl(wèi)=2πr得l=2r,
而表面積S=πr2+πr•2r=3πr2=3π,故r2=1,解得r=1,
故選:D.

點評 本題主要考查旋轉(zhuǎn)體的側(cè)面展開圖,注意立體圖和展開圖中量的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,當(dāng):
(1)$\overrightarrow{a}$∥$\overrightarrow$時,求$\overrightarrow{a}•\overrightarrow$;
(2)$\overrightarrow{a}$⊥$\overrightarrow$時,求$\overrightarrow{a}•\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{AB}$=(2,0),$\overrightarrow{AC}$=(1,6),則(2$\overrightarrow{AB}$+3$\overrightarrow{CA}$)$•\overrightarrow{BC}$=( 。
A.109B.101C.-107D.-109

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)在x=a處的導(dǎo)數(shù)為A(aA≠0),函數(shù)F(x)=f(x)-A2x2滿足F′(a)=0,則A=$\frac{1}{2a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a>0,a≠1,x>0,則“a>2”是“l(fā)oga$\frac{x+1}{2}$≥$\frac{1}{2}$logax”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\vec a$,$\vec b$的夾角為60°,且$|{\vec a}|=2$,$|{\vec b}|=1$,當(dāng)$|{\vec a-x\vec b}|$取得最小值時,實數(shù)x的值為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線16x2-9y2=144的離心率為( 。
A.$\frac{5}{3}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=$\left\{\begin{array}{l}{|2x+3|,x∈(-6,-1)}\\{{x}^{2},x∈[-1,1]}\\{x,(x∈[1,6]}\end{array}\right.$則f($\sqrt{2}$)=$\sqrt{2}$,則f(-π)=2π-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.2016年“雙節(jié)”期間,高速公路車輛較多,某調(diào)查公司在一服務(wù)區(qū)從小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔35輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速(km/h)分成六段:
[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如圖的頻率分布直方圖.
(Ⅰ)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;
(Ⅱ)若從車速在[60,70)的車輛中任抽取2輛,求車速在[65,70)的車輛至少有一輛的概率.

查看答案和解析>>

同步練習(xí)冊答案