3.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足cos2B-cos2C-sin2A=sinAsinB.
(1)求角C;
(2)若c=2$\sqrt{6}$,△ABC的中線CD=2,求△ABC面積S的值.

分析 (1)利用余弦定理表示出cosC,把已知等式利用正弦定理化簡,整理后代入計(jì)算求出cosC的值,即可確定出C的度數(shù).
(2)設(shè)∠ADC=α,則∠CDB=π-α.在△ADC與△ADB中,由余弦定理可得:b2+a2=20,在△ABC中,由余弦定理可得:b2+a2+ba=24.可得ba=4.即可得出.

解答 解:(1)∵△ABC的三個(gè)內(nèi)角為A,B,C,且cos2B-cos2C-sin2A=sinAsinB.
sin2C-sinAsinB=sin2A+sin2B,
∴由正弦定理化簡得:c2-ab=a2+b2,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
可得:cosC=$-\frac{1}{2}$
∵0<C<π,
∴C=$\frac{2π}{3}$.
(2)(2)設(shè)∠ADC=α,則∠CDB=π-α.
在△ADC中,由余弦定理可得:b2=${2}^{2}+(\sqrt{6})^{2}$-$2×\sqrt{6}×2×cosα$,
在△CDB中,由余弦定理可得:a22=${2}^{2}+(\sqrt{6})^{2}$-2×$2×\sqrt{6}$cos(π-α),
∴b2+a2=20,
在△ABC中,由余弦定理可得:$(2\sqrt{6})^{2}$=b2+a2-2ba$cos\frac{2π}{3}$,化為:b2+a2+ba=24.
∴ba=4.
∴S△ABC=$\frac{1}{2}$basin$\frac{2π}{3}$=$\sqrt{3}$.

點(diǎn)評 本題考查了正弦定理余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),$f(x)=\left\{\begin{array}{l}\frac{3}{2}cos\frac{π}{2}(1-x),0≤x≤1\\{(\frac{1}{2})^x}+1,x>1\end{array}\right.$,若函數(shù)g(x)=5[f(x)]2-(5a+6)f(x)+6a(a∈R)有且僅有6個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍( 。
A.$(0,1]∪\left\{{\frac{3}{2}}\right\}$B.$(0,\frac{3}{2}]$C.$(0,1)∪\left\{{\frac{3}{2}}\right\}$D.$(0,\frac{3}{2})∪\left\{0\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的圖象與函數(shù)y=x3-3x2+2的圖象關(guān)于點(diǎn)($\frac{1}{2}$,0)對稱,過點(diǎn)(1,t)僅能作曲線y=f(x)的一條切線,則實(shí)數(shù)t的取值范圍是(  )
A.(-3,-2)B.[-3,-2]C.(-∞,-3)∪(-2,+∞)D.(-∞,-3)∪[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在四棱錐P-ABCD中,$∠DBA=\frac{π}{2}$,$AB\underline{\underline∥}CD$,△PAB和△PBD都是邊長為2的等邊三角形,設(shè)P在底面ABCD的射影為O.
(1)求證:O是AD中點(diǎn);
(2)證明:BC⊥PB;
(3)求點(diǎn)A到面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知長方形ABCD中,AB=2AD,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若$\overrightarrow{DE}$=2$\overrightarrow{EB}$,求二面角E-AM-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+$\frac{2{a}^{2}+1}{a}$|+|x-a|(a>0)
(Ⅰ)證明:f(x)≥2$\sqrt{3}$;
(Ⅱ)當(dāng)a=1時(shí),求不等式f(x)≥5的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示為一名曰“塹堵”的幾何體,已知AE⊥底面BCFE,DF∥AE,DF=AE=1,CE=$\sqrt{7}$,四邊形ABCD是正方形.
(1)《九章算術(shù)》中將四個(gè)面都是直角三角形的四面體稱為鱉臑,判斷四面體EABC是否為鱉臑,若是,寫出其每一個(gè)面的直角,并證明;若不是,請說明理由.
(2)求四面體EABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,AB⊥平面BB1C1C,且四邊形BB1C1C是菱形,∠BCC1=60°.
(1)求證:AC1⊥B1C;
(2)若AC⊥AB1,三棱錐A-BB1C的體積為$\frac{\sqrt{6}}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足${a_1}=\frac{3}{2}$,an+1=3an-1(n∈N+).
(1)若數(shù)列{bn}滿足${b_n}={a_n}-\frac{1}{2}$,求證:{bn}是等比數(shù)列;
(2)若數(shù)列{cn}滿足cn=log3an,Tn=c1+c2+…+cn,求證:${T_n}>\frac{n(n-1)}{2}$.

查看答案和解析>>

同步練習(xí)冊答案