18.如圖,已知長方形ABCD中,AB=2AD,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若$\overrightarrow{DE}$=2$\overrightarrow{EB}$,求二面角E-AM-D的正弦值.

分析 (1)先證明BM⊥AM,再利用平面ADM⊥平面ABCM,證明BM⊥平面ADM,從而可得AD⊥BM.
(2)建立直角坐標系,求出平面AMD、平面AME的一個法向量,利用向量的夾角公式,即可得出二面角E-AM-D的正弦值.

解答 證明:(1)長方形ABCD中,設AB=2,AD=1,M為DC的中點
則AM=BM=$\sqrt{2}$,∴AM2+BM2=AB2,∴BM⊥AM
∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM?平面ABCM
∴BM⊥平面ADM
∵AD?平面ADM,∴AD⊥BM.
解:(2)建立如圖所示的直角坐標系,
∵$\overrightarrow{DE}$=2$\overrightarrow{EB}$,設AB=2,AD=1,
∴A($\frac{\sqrt{2}}{2}$,0,0),M(-$\frac{\sqrt{2}}{2}$,0,0),B(-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$,0),D(0,0,$\frac{\sqrt{2}}{2}$),
則平面AMD的一個法向量$\overrightarrow{n}$=(0,1,0),
$\overrightarrow{ME}$=($\frac{\sqrt{2}}{6}$,$\frac{2\sqrt{2}}{3}$,$\frac{\sqrt{2}}{6}$),$\overrightarrow{AM}$=(-$\sqrt{2}$,0,0),
設AME的一個法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{ME}=\frac{\sqrt{2}}{6}x+\frac{2\sqrt{2}}{3}y+\frac{\sqrt{2}}{6}z=0}\\{\overrightarrow{m}•\overrightarrow{AM}=-\sqrt{2}x=0}\end{array}\right.$,取y=1,得$\overrightarrow{m}$=(0,1,-4),
設二面角E-AM-D的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{17}}$,sinθ=$\sqrt{1-(\frac{1}{\sqrt{17}})^{2}}$=$\frac{4\sqrt{17}}{17}$,
∴二面角E-AM-D的正弦值為$\frac{4\sqrt{17}}{17}$.

點評 本題考查線線垂直的證明,考查二面角的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.下列函數(shù)中,與函數(shù)y=ln(x-1)定義域相同的是( 。
A.$y=\frac{1}{x-1}$B.$y={(x-1)^{-\frac{1}{2}}}$C.y=ex-1D.$y=\sqrt{sin(x-1)}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.我國古代數(shù)學家祖暅是著名數(shù)學家祖沖之之子,祖暅原理敘述道:“夫疊棋成立積,緣冪勢既同,則積不容異.”意思是:夾在兩個平行平面之間的兩個幾何體被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面面積總相等,那么這兩個幾何體的體積相等.其最著名之處是解決了“牟合方蓋”中的體積問題,其核心過程為:如下圖正方體ABCD-A1B1C1D1,求圖中四分之一圓柱體BB1C1-AA1D1和四分之一圓柱體AA1B1-DD1C1公共部分的體積V,若圖中正方體的棱長為2,則V=(  )  
(在高度h處的截面:用平行于正方體上下底面的平面去截,記截得兩圓柱體公共部分所得面積為S1,截得正方體所得面積為S2,截得錐體所得面積為S3,${S_1}={R^2}-{h^2}$,${S_2}={R^2}$⇒S2-S1=S3
A.$\frac{16}{3}$B.$\frac{8}{3}$C.8D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某闖關游戲規(guī)則是:先后擲兩枚骰子,將此試驗重復n輪,第n輪的點數(shù)分別記為xn,yn,如果點數(shù)滿足xn<$\frac{6{y}_{n}}{{y}_{n}+6}$,則認為第n輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(I)求第一輪闖關成功的概率;
(Ⅱ)如果第i輪闖關成功所獲的獎金數(shù)f(i)=10000×$\frac{1}{{2}^{i}}$(單位:元),求某人闖關獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數(shù)為隨機變量X,求x的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=CC1=2,M是AB的中點.
(1)求證:平面A1CM⊥平面ABB1A1
(2)求點M到平面A1CB1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知△ABC的內角A,B,C的對邊分別為a,b,c,且滿足cos2B-cos2C-sin2A=sinAsinB.
(1)求角C;
(2)若c=2$\sqrt{6}$,△ABC的中線CD=2,求△ABC面積S的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在正方形ABCD中,點E,F(xiàn)分別是AB,BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于P.設EF與BD交于點O,過點P作PH⊥BD,垂足為H.
(Ⅰ)求證:PH⊥底面BFDE;
(Ⅱ)若四棱錐P-BFDE的體積為12,求正方形ABCD的邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某次運動會的游泳比賽中,已知5名游泳運動員中有1名運動員服用過興奮劑,需要通過檢驗尿液來確定因服用過興奮劑而違規(guī)的運動員,尿液檢驗結果呈陽性的即為服用過興奮劑的運動員,呈陰性則沒有服用過興奮劑,組委會提供兩種檢驗方法:
方案A:逐個檢驗,直到能確定服用過興奮劑的運動員為止.
方案B:先任選3名運動員,將他們的尿液混在一起檢驗,若結果呈陽性則表明違規(guī)的運動員是這3名運動員中的1名,然后再逐個檢驗,直到能確定為止;若結果呈陰性則在另外2名運動員中任選1名檢驗.
(Ⅰ)求依方案A所需檢驗次數(shù)不少于依方案B所需檢驗次數(shù)的概率;
(Ⅱ)ξ表示依方案B所需檢驗次數(shù),求ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求實數(shù)a的取值范圍;
(2)若a=0,求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)若函數(shù)g(x)=f(x)-x有兩個極值點x1,x2,求證:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2ae.

查看答案和解析>>

同步練習冊答案