3.直線x-$\sqrt{3}$y+2$\sqrt{3}$=0與圓x2+y2=4相交于A,B兩點,求|AB|的值.

分析 求出圓心到直線的距離,再由弦心距、圓的半徑及弦長的關(guān)系求得|AB|的值.

解答 解:圓x2+y2=4的圓心坐標(biāo)為O(0,0),半徑r=2,
圓心O到直線x-$\sqrt{3}$y+2$\sqrt{3}$=0的距離d=$\frac{|2\sqrt{3}|}{\sqrt{{1}^{2}+(-\sqrt{3})^{2}}}=\sqrt{3}$,
∴|AB|=$2\sqrt{{r}^{2}-dsrs8b9^{2}}=2\sqrt{4-3}=2$.

點評 本題考查圓的方程,訓(xùn)練了點到直線的距離公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系中,O為坐標(biāo)原點,過點P(1,1)作直線L與圓x2+y2=9分別相交于A、B兩點,則當(dāng)|AB|從最短到最長(逆時針方向旋轉(zhuǎn))變化的過程中,直線L的斜率的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知P(x,y)是中心在原點,焦距為4$\sqrt{2}$的雙曲線上一點,且$\frac{y}{x}$的取值范圍為(-1,1),則該雙曲線的方程是( 。
A.x2-y2=8B.y2-x2=8C.x2-y2=4D.y2-x2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位后得到的函數(shù)圖象的解析式為(  )
A.y=sin2xB.y=sin(2x+$\frac{π}{3}$)C.y=sin(2x+$\frac{π}{6}$)D.y=sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè){an}是首項為a,公比為q(q≠1)的等比數(shù)列,求a1${C}_{n}^{0}$+a2${C}_{n}^{1}$+…+an-1${C}_{n}^{n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.下列隨機(jī)試驗的結(jié)果能否用離散型隨機(jī)變量表示?若能,則寫出各隨機(jī)變量可能的取值,并說明這些值所表示的隨機(jī)試驗的結(jié)果.
(1)從學(xué)校回家要經(jīng)過5個紅綠燈口,可能遇到紅燈的次數(shù);
(2)在優(yōu)、良、中、及格、不及格5個等級的測試中,某同學(xué)可能取得的成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知定義域為(1,+∞)的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f(e)=2,$\frac{f(x)}{x}$=lnx•f′(x),則不等式xf(x)<2e的解集為(1,e).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,F(xiàn)1,F(xiàn)2為雙曲線C的左右焦點,且|F1F2|=2.若雙曲線C的右支上存在點P,使得PF1⊥PF2.設(shè)直線PF2與y軸交于點A,且△APF1的內(nèi)切圓半徑為$\frac{1}{2}$,則雙曲線C的離心率為(  )
A.2B.4C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知{an}是各項均為正數(shù)的等比數(shù)列,a3=a2+2a1,且a3+1是a2與a4的等差中項
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{a_n}+{log_2}{a_n}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案